Примеры непосредственного вычисления вероятностей
Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.
Решение. Обозначим через А событие — набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число нужных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к чкслу всех элементарных исходов:
Пример 2. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.
Решение. Обозначим через В событие — набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т. е. . Таким образом, общее число возможных элементарным исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
.
Пример 3. Указать ошибку «решения» задачи: «Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие А)».
Решение. Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не раина 4. Событию А благоприятствует один исход; общее число исходов равно двум. Следовательно, искомая вероятность
Ошибка этого решения состоит в том, что рассматриваемые исходы являются равновозможными.
Правильное решение. Общее число равновозможных исходов равно (каждое число выпавших очков на одной кости может сочетаться со всеми числами очков другой кости). Среди этих исходов благоприятствуют событию А только 3 исхода: (1;3), (3; 1), (2; 2) (в скобках указаны числа выпавших очков). Следовательно, искомая вероятность
.
Пример4. Впартии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.
Решение. Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов по 6 элементов ( ).
Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей способами; при этом остальные 6—4 = 2 детали должны быть нестандартными; взять же 2 нестандартные детали из 10—7=3 нестандартных деталей можно способами. Следовательно, число благоприятных исходов равно
Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:
.
Дата добавления: 2016-03-27; просмотров: 661;