Конъюнктивные нормальные формы (КНФ)

 

Введем обозначения

_

Xа = X, если а = 1 и X, если а = 0

 

Элементарной конъюнкцией (ЭК) называется выражение вида

X1a1 X2a2…Xnan

 

ЭК называется правильной, если все входящие в неё переменные различны.

Правильная ЭК называется полной относительно данного набора переменных, если в неё входят все эти переменные.

Для элементарных дизъюнкций (ЭД) – аналогичный набор определений.

ЭД – выражение вида

X1a1 V X2a2 V…V Xnan

ДНФ – дизъюнкция разных правильных элементарных конъюнкций.

__

X1 V X1X2 V X1X2X3 – ДНФ.

 

ДНФ называется совершенной (СДНФ), если все входящие в неё элементарные конъюнкции полны относительно данного набора переменных.

 

КНФ – конъюнкция разных правильных элементарных дизъюнкций.

СКНФ – совершенная КНФ. У нее все ЭД полны.

 

Теорема.

Любая булева функция, тождественно не равная нулю, представима и притом единственным образом в виде СДНФ по формуле:

F(x1… xn) = V(X1a1 X2a2…Xnan)

 

Доказательство

I. Существование

1. F = G

N(f) Ì N(G) – носители функции.

" a Ì N (F) Þ F(a…an) = 1

G(a) = G(a…an) = (aa…anan) V (…) , где пустые скобки – оставшееся выражение.

Подставив координаты, получим:

1*1V(…) = 1 ) Þ a Ì N (G) ÞN(F) = N(G)

2. b Î N(G)

G(b..bn) = 1 – тогда, когда хотя бы одна

b1a1 b2a2…bnan = 1 Þ b1 = a …bn = an b = a Þ N(G) = N(F)

Первая часть доказана.

 

II. Единственность

Посчитаем, сколько полных ЭК может быть

Всего – 2n = N (по перестановке комбинаций)

Число СДНФ – 2N-1 – число различных формул СДНФ.

Это число совпадает с числом различных булевых функций от n переменных (за исключением константы 0).

Так как каждой функции ставится в соответствие формула СДНФ и число разных формул и разных функций одинаково, то каждой функции соответствует только одна формула. Теорема доказана полностью.

Замечание. Единственность доказана при фиксированном числе аргументов n. Так как, вводя фиктивные переменные, мы будем менять вид формулы.

Следствие. Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание.

 

 

Принцип двойственности

F*(x1…xn) – двойственная функция,

_ _ _

F*(x1…xn) = F(x1…xn)

 

Например

____

_ _

(XY)* = XY = X V Y

 

Чтобы получить вектор двойственности функции при ее табличном задании, переворачиваем таблицу на 180 градусов и берем отрицание от получившейся функции.

Теорема. Принцип двойственности.

Если F (x1…xn) является суперпозицией функций fi (i = 1...k), то двойственная к ней функция является такой же по структуре суперпозицией, но от двойственных функций.

Доказательство следует из определения двойственной функции.

_ _ _ _ _ __

F*(x1..xn) = F(x1…xn) = f(f1…fk) = f*(f1…fk)

 

Следствие

f(x1..xn) = K1 V K2 V… V Kn – СДНФ

f*(x1..xn) = D1 D2 … Dn - СКНФ

 

Используя принцип двойственности, можно доказать следующую теорему.

Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде СКНФ.

Доказательство получается из самого принципа двойственности и его следствий.

Задача минимизации ДНФ.

Определения:

1. Рангом правильной ЭК называется число разных переменных, входящих в нее.

2. Рангом ДНФ называется сумма рангов всех ЭК, входящих в ДНФ.

3. Минимальной ДНФ или Dmin для данной функции называется ДНФ, которая равна этой функции и имеет наименьший ранг.

Задача минимизации ДНФ для данной функции состоит в нахождении минимальной ДНФ.

Число ДНФ при фиксированном n – конечное (n - число переменных)

 

Тривиальный алгоритм минимизации ДНФ состоит в следующем:

1. Выписываем все возможные ДНФ от данного числа n в порядке возрастания их рангов.

2. Последовательно сравниваем нашу функцию с каждой из этих ДНФ. Первая ДНФ, которой равна наша функция имеет минимальный ранг.

 

Алгоритм представления функции в виде СДНФ.

1. Выписываем носитель функции.

2. Для каждого вектора из носителя выписываем конъюнкцию соответствующих переменных. (если координата равна нулю, переменную пишем с отрицанием, если единице – без отрицания). Это и будут все полные ЭК.

3. Выписываем дизъюнкцию всех этих ЭК.

 

Алгоритм представления функции в виде СКНФ.

1. Выписываем носитель функции

2. Для каждого вектора из носителя выписываем дизъюнкцию соответствующих переменных. (если координата равна нулю, переменную пишем без отрицания, . если единице – с отрицанием). Это и будут все полные ЭД.

3. Выписываем конъюнкцию всех этих ЭД.


Лекция 5

Продолжение темы «ДНФ»

Носитель элементарной конъюнкции ранга R будем называть интервалом ранга R.

Интервал ранга R содержит 2N-R векторов.

N – количество рассматриваемых векторов.

Интервал – носитель элементарной конъюнкции.

 

Теорема

Носитель дизъюнкции двух функций равен объединению носителей этих функций.

Доказательство.

" a Î Nf V g Þ f(a) V g(a) = 1 Þ f(a) = 1 ИЛИ g(a) = 1 Þ a Î Nf ИЛИ a Î N g

ч.т.д.

Носитель ДНФ является объединением интервалов.

Допустимым интервалом для данной функции называется интервал, который целиком содержится в носителе этой функции.

Nf = I1 V I2 V … V Ik

Интервал для данной функции является максимальным, если он не содержится целиком ни в каком другом допустимом интервале.

Элементарная конъюнкция, носителем которой является допустимый интервал, называется импликантой.

ЭК, N – максимальный интервал – простая импликанта.

Представление носителя в виде объединения максимальных интервалов будем называть покрытием носителя максимальными интервалами.

Дизъюнкция всех возможных простых импликант называется сокращенной ДНФ функции.

Покрытие носителя интервалами будем называть неприводимым, если ни один нельзя отбросить из правой части равенства, не нарушив это равенство.

ДНФ, которая соответствует неприводимому покрытию, называется тупиковой ДНФ.

Утверждение.

Минимальная ДНФсодержится среди тупиковых ДНФ.

Определение

Максимальный интервал называется ядровым, если он содержит хотя бы одну вершину из носителя функции, которая не принадлежит больше никакому другому максимальному интервалу.

Элементарная конъюнкция, соответствующая ядровому интервалу – ядровая импликанта.

Объединение всех ядровых интервалов – ядро функции.

Дизъюнкция всех ядровых импликант - ядровая ДНФ.

Ядро функции обязательно входит в любое неприводимое покрытие.

 

Алгоритм получения минимальной ДНФ.

1. Выделяем носитель функции.

2. Выделяем все возможные интервалы.

3. Выписываем все простые импликанты.

4. Выделяем ядровый интервал.

5. Используя ядро функции и комбинацию неядровых интервалов, получаем все неприводимые покрытия, для каждого из которых выписываем тупиковую ДНФ.

6. Среди тупиковых ДНФ выбираем минимальную.

 

X1 X2 X3 F
0
0
0
1
1
1

 

Выделение всех возможных интервалов.

1. Для булева куба размерности 3 интервалом ранга 1 могут быть 4 вершины, лежащие в одной грани.

2. Ранга 2 – любые 2 вершины, соединенные ребром.

3. Ранга 3 – любая отдельная вершина.

 

1. Нет _

2. I1 = { 001 011} <-> П1 = x1x3 - ядровый

I2 = { 011 111} <-> П2 = x2x3

Если координата вектора меняет значения, то переменная не входит

I3 = { 111 110} <-> П3 = x1x2

_

I4 = { 110 100} <-> П4 = x1x3

 

Dсокр. = П1 V П2 V П3 V П4

 

Nf = I1 U I4 U I2 (U – объединение)

Получили неприводимое покрытие, добавив к ядру недостающие интервалы так, чтобы все единичные вершины были задействованы.

D1= П1 V П4 V П2

Nf = I1 U I4 U I3

D2= П1 V П4 V П3

Сосчитаем ранги тупиковых ДНФ

R1 = 6

R2 = 6

 
 


Dmin = D1 = D2

 








Дата добавления: 2016-03-27; просмотров: 919;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.03 сек.