Лекция № 10 Измерение информации

Методы измерения информации. Свойства количества информации. Подходы к измерению информации.

Базовые понятия

Информация, подходы к определению информации, виды информации, свойства информации; бит, байт, ки­лобайт; вероятностный подход к измерению информа­ции, объемный подход к измерению информации.

Информация относится к фундаментальным, неопреде­ляемым понятиям науки информатика. Тем не менее смысл этого понятия должен быть разъяснен. Предпримем по­пытку рассмотреть это понятие с различных позиций.

Термин информация происходит от латинского слова informatio, что означает сведения, разъяснения, изложение. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполне­ния в различных отраслях человеческой деятельности:

• в быту информацией называют любые данные, све­дения, знания, которые кого-либо интересуют. Напри­мер, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

• в технике под информацией понимают сообще­ния, передаваемые в форме знаков или сигналов (в этом случае есть источник сообщений, получатель (прием­ник) сообщений, канал связи);

• в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирова­ния, активного действия, управления, т.е. в целях со­хранения, совершенствования, развития системы;

• в теории информации под информацией пони­мают сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся степень неопределенности, не­полноты знаний о них.

Применительно к компьютерной обработке данных под информацией понимают некоторую последователь­ность символических обозначений (букв, цифр, закоди­рованных графических образов и звуков и т.п.), несу­щую смысловую нагрузку и представленную в понят­ном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информаци­онный объем сообщения.

Информация может существовать в виде:

• текстов, рисунков, чертежей, фотографий;

• световых или звуковых сигналов;

• радиоволн;

• электрических и нервных импульсов;

• магнитных записей;

• жестов и мимики;

• запахов и вкусовых ощущений;

• хромосом, посредством которых передаются по наследству признаки и свойства организмов;

• и т.д. (приведите примеры других видов существо­вания информации).

Свойства информации (с точки зрения бытового подхода к определению информации):

• релевантность — способность информации соот­ветствовать нуждам (запросам) потребителя;

• полнота — свойство информации исчерпывающе (для данного потребителя) характеризовать отображае­мый объект или процесс;

• своевременность — способность информации со­ответствовать нуждам потребителя в нужный момент времени;

• достоверность — свойство информации не иметь скрытых ошибок. Достоверная информация со време­нем может стать недостоверной, если устареет и пере­станет отражать истинное положение дел;

• доступность — свойство информации, характе­ризующее возможность ее получения данным потре­бителем;

• защищенность — свойство, характеризующее не­возможность несанкционированного использования или изменения информации;

• эргономичность — свойство, характеризующее удоб­ство формы или объема информации с точки зрения данного потребителя.

1 бит — минимальная единица измерения информа­ции, при вероятностном подходе к измерению информа­ции, принятом в теории информации, это количество ин­формации, уменьшающее неопределенность знаний в 2 раза.

Связь между единицами измерения информации: •* 1 байт = 8 бит,

• 1 Кб (килобайт) = 2ю (1024) байт = 213 бит;

• 1 Мб (мегабайт) = 210 (1024) Кб = = 2го (1048576) байт = 223 бит;

• 1 Гб (гигабайт) = 210Мб = 220 Кб = 230 байт =

= 233 бит;

• 1 Тб (терабайт) = 210 Гб = 220Мб = 230 Кб = = 240 байт = 243 бит.

При объемном подходе к измерению информации, характерном для компьютерной обработки данных, ин­формативность сообщения определяется количеством символов, его составляющих.

Детализация понятия "бит" с точки зрения вероят­ностного подхода к измерению информации. Философ­ские и математические аспекты. Примеры.

Пример решения задачи с использованием разных единиц измерения информации.

2. Основы языка разметки гипертекста (HTML) Базовые понятия

Разметка документа, языки разметки документов, Hyper Text Markup Language, тэг (tag), структура HTML-документа, основные тэги HTML.

Hyper Text Markup Language (HTML) является стан­дартным языком, предназначенным для создания ги­пертекстовых документов в среде Web. HTML-документы могут просматриваться различными типами браузеров (специальными программами, интерпретирующими та­кого рода гипертекстовые документы), наиболее извест­ным из которых является Internet Explorer. В отличие от документов, например текстового процессора Microsoft Word, документы в формате HTML не орга­низованы по принципу WYSIWYG (What You See Is What You Get — что видишь, то и получишь [при вы­воде на печать или монитор] ). Когда документ создан с использованием HTML, браузер должен интерпретиро­вать HTML для выделения различных элементов доку­мента и первичной их обработки с целью их дальней­шего отображения в виде, задуманном автором.

Большинство документов имеют стандартные элемен­ты, такие, как заголовки, параграфы или списки. Ис­пользуя тэги (команды) HTML, можно обозначать дан­ные элементы, обеспечивая браузеры минимальной ин­формацией для их отображения, сохраняя в целом об­щую структуру и информационную полноту докумен­тов. В большинстве случаев автор документа строго оп­ределяет внешний вид документа. В случае HTML чита­тель (основываясь на возможностях браузера) может в определенной степени управлять внешним видом доку­мента (но не его содержимым). HTML позволяет от­метить, где в документе должен быть заголовок или аб­зац, при помощи тэга HTML, а затем предоставляет браузеру интерпретировать эти тэги.

Общая структура тэга и его содержимого такова: <тэг параметр_1=значение_1 параметр_2=значение_2 ... параметр_К=значение_К>содержимое элемента</тэг>

Любой HTML-документ имеет следующую структуру:

<HTML> <HEAD>

<!-- заголовок документа --> </HEAD> <BODY>

<!-- содержание документа --> </BODY> </HTML>

Заголовок содержит служебную информацию, в част­ности, предназначенную для поисковых систем.

Все тэги, которые предназначены для оформления до­кумента, могут быть условно разделены на несколько групп:

• форматирование;

• верстка таблиц;

• верстка списков;

• формирование гиперссылок;

• вставка изображений.

Тэт верстки, таблиц позволяют формировать и отобра­жать таблицы произвольной сложности. Вообще дизайне­ры довольно часто используют таблицы для оформления страниц, помещая в них меню, текст, рисунки и т.д.

Тэги верстки списков позволяют формировать мар­кированные и нумерованные списки.

Гипертекстовый документ невозможно представить себе без ссылок на другие документы (внутренние или внешние). Ссылки формирует тэг <А>...</А> -с обязательным параметром HREF.

Тэг для отображения рисунков — <IMG>. Он не имеет закрывающегося тэга и содержит обязательный параметр SRC, значением которого является адрес фай­ла с рисунком {относительный, т.е. на данном сайте, но, например, в другом каталоге, или абсолютный, если рисунок, например изображение счетчика, подгружает­ся с другого сайта).

Современные web-конструкторы и дизайнеры пользу­ются не только HTML, но и рядом его расширений, например, каскадными таблицами стилей (CSS), уп­равляют содержанием страниц средствами программи­рования.

Заголовок HTML-документа и назначение его эле­ментов.

Тэги форматирования текста и примеры их исполь­зования.

Тэги верстки таблиц и примеры их использования.

Тэги верстки списков и примеры их использования.

Графические форматы для web. Правила сохранения изображений для web, требования к изображениям. Па­раметры тэга IMG.

Понятие о CSS, языках программирования для web. Исполнение программ и скриптов на стороне сервера и клиента.

3. Практическое задание на поиск информации в глобальной компьютерной сети Интернет

Принципы составления задания

При составлении заданий следует учесть, чтобы ис­комая информация была достаточно доступной, актуальной, представляла познавательный интерес для учащихся. В случае невозможности реального поиска в глобальной сети следует воспользоваться програм­мами — имитаторами поиска или осуществлять по­иск в локальной сети (Еремин Е.А. Имитатор поиско­вой машины как эффективное средство обучения по­иску информации в Интернете. // "Информатика" №45, с. 15-20, 2001).

I g (типы данных, операторы, функции, процедуры и т.д.). I

|s 3. Основные этапы инсталляции программно- |

!« го обеспечения. Практическое задание. Инстал- I

i у* ляция программы с носителя информации (дис- .

кет, дисков CD-ROM).

1. Информационные процессы. Хранение, передача и обработка информации

Базовые понятия

Информационный процесс, восприятие информации, передача информации, получение информации, обработ­ка информации, хранение информации, информацион­ная деятельность человека

Обязательно изложить

Под информационным, понимают процесс, связанный с определенными операциями над информацией, в ходе которого может измениться содержание информации или форма ее представления. В информатике к таким процессам относят получение, хранение, передачу, об­работку, использование информации.

Получение информации основано на отражении раз­личных свойств объектов, явлений и процессов окружаю­щей среды. В природе такого рода отражение выража­ется в восприятии с помощью органов чувств. Человек пошел дальше по этому пути и создал множество при­боров, которые многократно усиливают природные спо­собности к восприятию.

Человек воспринимает с помощью органов чувств сле­дующую информацию:

• визуальная (восприятие зрительных образов, раз­личение цветов и т.д.) — с помощью зрения;

• звуковая (восприятие музыки, речи, сигналов, шума и т.д.) — с помощью слуха;

• обонятельная (восприятие запахов) — с помощью обоняния;

• вкусовая (восприятие посредством вкусовых рецеп­торов языка) — с помощью вкуса;

• тактильная (посредством кожного покрова восприя­тие информации о температуре, качестве предметов и т.д.) — с помощью осязания.

Хранение информации имеет большое значение для многократного использования информации, передачи информации во времени.

Передача информации необходима для того или ино­го ее распространения. Простейшая схема передачи такова:

источник информации — канал связи — прием­ник {получатель) информации

Для передачи информации с помощью технических средств необходимо кодирующее устройство, предназ­наченное для преобразования исходного сообщения ис­точника информации к виду, удобному для передачи, и декодирующее устройство, необходимое для преобра­зования кодированного сообщения в исходное.

Обработка информации подразумевает преобразова­ние ее к виду, отличному от исходной формы или со­держания информации.

Наиболее общая схема обработки информации такова: входная информация — преобразователь инфор­мации — выходная информация

Процесс изменения информации может включать в себя, например, такие действия: численные расчеты, ре­дактирование, упорядочивание, обобщение, системати­зация и т.д.

Деятельность человека, которая связана с процесса­ми получения, преобразования, накопления, передачи и использования информации, управления, называют ин­формационной деятельностью.

Основные вехи в процессе развития и совершенство­вания информационной деятельности человека перечис­лены ниже.

Появление речи. Значительно расширило возможнос­ти информационной деятельности человека, в особен­ности передачи информации.

Возникновение письменности. Дало возможность дол­говременного хранения информации и передачи накоп­ленных знаний и культурных ценностей последующим поколениям.

Изобретение книгопечатания. Революция в мире ти­ражирования знаний, хранящихся в письменном виде. Расширение научной информации, развитие художе­ственной литературы и т.д.

Изобретение ЭВМ — универсальных инструментов информационной деятельности.

2. Основы алгоритмического программирования (типы данных, операторы, функции, процедуры и т.д.)

Базовые понятия

Аргументы и результаты алгоритма, промежуточные величины.

Тип данных (определяет, какие значения может при­нимать величина, какие операции над ней можно вы­полнять и как она хранится в памяти машины).

Простые и сложные типы данных. Простому типу соответствует только одно текущее значение, а слож­ный объединяет несколько.

Операторы: присваивания и управляющие (развил­ка, цикл).

Процедура и функция.

В программировании налицо две взаимосвязанные сос­тавляющие процесса решения задачи: собственно дан­ные и инструкции по их обработке, т.е. алгоритм.

Рассмотрение начнем с первой составляющей — дан­ных. По роли данных в алгоритме различают исходные (входные) данные, выходные (чаще говорят — резуль­тат) и рабочие (промежуточные) данные.

Каждая величина в алгоритме имеет свой тип. Тип величины определяет, какие значения может принимать величина, какие операции над ней можно

1. Функциональная схема компьютера (основные устройства, их взаимосвязь). Характеристики современных персональных компьютеров

Базовые понятия

Функциональные устройства компьютера: процессор, память (внутренняя и внешняя), устройства ввода и вывода информации.

Шина (информационная магистраль) — основное устройство для переноса информации между блоками компьютера. Ее составляющие: шина адреса, шина данных и шина управления.

Основные характеристики компьютера: процессор — тактовая частота; ОЗУ и видеопамять — объем; набор периферийных устройств и возможности их расширения.

Современный компьютер есть сложное электронное устройство, состоящее из нескольких важных функцио­нальных блоков, взаимодействующих между собой.

Главным устройством компьютера является процес­сор. Он служит для обработки информации и, кроме того, обеспечения согласованного действия всех узлов, входящих в состав компьютера.

Для хранения данных и программы их обработки в компьютере предусмотрена память. Информация по решаемым в данный момент задачам хранится в опе­ративном запоминающем устройстве (ОЗУ). Для со­хранения результатов необходимо использовать носи­тель внешней памяти, например, магнитный или оп­тический диск.

Для задания исходных данных и получения инфор­мации о результатах необходимо дополнить компью­тер устройствами ввода и вывода.

Все устройства компьютера взаимодействуют меж­ду собой единым способом через посредство специальной информационной магистрали или шины. Непос­редственно к шине подсоединяются процессор и внут­ренняя память (ОЗУ и ПЗУ). Остальные устройства для согласования с шиной имеют специальные кон­троллеры, назначение которых состоит в обеспечении стандартного обмена информацией через шину. Шина компьютера состоит из трех частей:

• шина адреса, на которой устанавливается адрес тре­буемой ячейки памяти или устройства, с которым бу­дет происходить обмен информацией;

• шина данных, по которой, собственно, и будет пе­редана необходимая информация;

• шина управления, регулирующая этот процесс.

Рассмотрим в качестве примера, как процессор чи­тает содержимое ячейки памяти. Убедившись, что шина свободна, процессор помещает на шину адреса требу­емый адрес и устанавливает необходимую служебную информацию (операция — чтение, устройство — ОЗУ и т.п.) на шину управления. ОЗУ, "увидев" на шине обращенный к нему запрос на чтение информации, из­влекает содержимое необходимой ячейки и помещает его на шину данных (разумеется, реальный процесс зна­чительно более детальный).

Подчеркнем, что на практике функциональная схе­ма может быть значительно сложнее: компьютер мо­жет содержать несколько процессоров, прямые инфор­мационные каналы между отдельными устройствами, несколько взаимодействующих шин и т.д.

Магистральная структура позволяет легко подсоеди-. нять к компьютеру именно те внешние устройства, которые нужны для данного пользователя.

Характеристики персональных компьютеров факти­чески представляют собой совокупность характеристик отдельных устройств, его составляющих (хотя, строго говоря, они должны разумно соответствовать друг дру­гу) . Наиболее важными из них являются следующие.

Главная характеристика процессора — тактовая час­тота. Такты — это элементарные составляющие машин­ных команд. Для организации их последовательного вы­полнения в компьютере имеется специальный генератор импульсов. Очевидно, что чем чаще следуют импульсы, тем быстрее будет выполнена операция, состоящая из фиксированного числа тактов. Тактовая частота в совре­менных компьютерах измеряется в гигагерцах, что соот­ветствует миллиардам импульсов в секунду.

С теоретической точки зрения важной характерис­тикой процессора является его разрядность. На прак­тике же все выпускаемые в данный момент процессо­ры имеют одинаковую (причем достаточную для по­давляющего большинства практических целей) разрядность. С другой стороны, при выборе компьютера важ­ное значение имеет набор окружающих процессор микросхем (так называемый "чипсет" ), но детали этого вопроса выходят далеко за рамки билета.

Объемы ОЗУ и видеопамяти также являются важ­ными характеристиками компьютера. Единицей их из­мерения в настоящий момент является мегабайт, хотя в некоторых наиболее дорогих моделях оперативная память уже превышает 1 гигабайт. Еще одной, "более технической", характеристикой является время досту­па к памяти — время выполнения операций записи или считывания данных, которое зависит от принципа действия и технологии изготовления запоминающих элементов.

По технологии изготовления различают статические и динамические микросхемы памяти. Первая является более быстродействующей, но, соответственно, и более дорогой. В качестве компромиссного решения в совре­менных компьютерах применяется сочетание большого основного объема динамического ОЗУ с промежуточ­ной (между ОЗУ и процессором) статической кэш-па­мятью. Ее объем также оказывает существенное влия­ние на производительность современного ПК.

Важной характеристикой компьютера является его оснащенность периферийными устройствами. Читате­ли легко смогут привести здесь достаточное количество примеров. Хочется только подчеркнуть, что существенна 'также возможность подключения к машине дополни7 тельных внешних устройств. Например, современно­му компьютеру совершенно необходимо иметь разъе­мы USB1, через которые к нему можно подключать множество устройств: от принтера и мыши до флэш-диска и цифрового фотоаппарата.

При обращении к внешним устройствам использу­ются специальные регистры, которые принято назы­вать портами.

Обмен по шине между устройствами при опреде­ленных условиях и при наличии вспомогательного кон­троллера может происходить без непосредственного участия процессора. В частности, возможен такой об­мен между периферийным устройством и ОЗУ (пря­мой доступ к памяти).

Оба вида запоминающих микросхем — статические и динамические — успешно конкурируют между со­бой. С одной стороны, статическая память значитель­но проще в эксплуатации и приближается по быстро­действию к процессорным микросхемам. С другой сто­роны, она имеет меньший информационный объем и большую стоимость, сильнее нагревается при работе. На практике в данный момент выбор микросхем для построения ОЗУ всегда решается в пользу динамиче­ской памяти. И все же быстродействующая статиче-

1 USB (Universal Serial Bus) — универсальная последователь­ная шина.

екая память в современном компьютере обязательно есть: она называется кэш-памятью.

Кэш невидим для пользователя, так как процессор использует его исключительно самостоятельно. Кроме сохранения данных и команд, считываемых из ОЗУ, в специальном каталоге кэш запоминаются также адре­са, откуда информация была извлечена. Если информа­ция потребуется повторно, уже не надо будет терять время на обращение к ОЗУ — ее можно получить из кэш-памяти значительно быстрее. Кэш-память явля­ется очень

2. Технология объектно-ориентированного программирования (объекты, их свойства и методы, классы объектов)

Базовые понятия

Парадигма программирования, объектно-ориенти­рованное программирование, объект, метод, инкапсу­ляция, наследование, полиморфизм.

Внешняя память, накопитель, носитель информации, магнитный носитель, оптический носитель.

Внешняя (долговременная) память — это место дли­тельного хранения данных (программ, результатов рас­четов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьюте­ры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — но­сителя.

Основные виды накопителей:

• накопители на гибких магнитных дисках (НГМД);

• накопители на жестких магнитных дисках (НЖМД);

• накопители на магнитной ленте (НМЛ);

• накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

• гибкие магнитные диски (Floppy Disk)',

• жесткие магнитные диски (Hard Disk);

• кассеты для стримеров и других НМЛ;

• диски CD-ROM, CD-R, CD-RW, DVD-R, DVD-RW. Основные характеристики накопителей и носителей:

• информационная емкость;

• скорость обмена информацией;

• надежность хранения информации;

• стоимость.

Принцип работы магнитных запоминающих уст­ройств основан на способах хранения информации с ис­пользованием магнитных свойств материалов. Как прави­ло, магнитные запоминающие устройства состоят из соб­ственно устройств чтения/записи информации и маг­нитного носителя, на который непосредственно осуще­ствляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими харак­теристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая тех­нология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носите­ли, как правило, намагничиваются вдоль концентрических полей — дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись произво­дится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечника­ми, на обмотки которых подается переменное напряже­ние. Изменение величины напряжения вызывает измене­ние направления линий магнитной индукции магнитного поля и при намагничивании носителя означает смену зна­чения бита информации с 1 на 0 или с 0 на 1.

Компакт-диск диаметром 120мм (около 4,75") изго­товлен из полимера и покрыт металлической пленкой. Информация считывается именно с этой металлической пленки, которая покрывается полимером, защищающим данные от повреждения. CD-ROM является односторон­ним носителем информации.

Считывание информации с диска происходит за счет регистрации изменений интенсивности отраженного от алюминиевого слоя излучения маломощного лазера. При­емник, или фотодатчик, определяет, отразился ли луч от гладкой поверхности, был рассеян или поглощен. Рассеива­ние или поглощение луча происходит в местах, где в про­цессе записи были нанесены углубления. Фотодатчик вос­принимает рассеянный луч, и эта информация в виде элект­рических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Скорость считывания информации с CD-ROM срав­нивают со скоростью считывания информации с музы­кального диска (150 Кб/с), которую принимают за еди­ницу. На сегодняшний день наиболее распространенны­ми являются 52-скоростные накопители CD-ROM (ско­рость считывания — 7500 Кб/с).

Устройства с возможностью многократной записи на оптический диск используют многослойный диск с отра­жающей поверхностью, перед которой находится слой

 

 








Дата добавления: 2016-03-22; просмотров: 1307;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.042 сек.