Состав рассчитываемых показателей
НАДЕЖНОСТЬ ОБЪЕКТОВ ПРИ ПОСТЕПЕННЫХ ОТКАЗАХ. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СОХРАНЕНИЯ РАБОТОСПОСОБНОСТИ
Состав рассчитываемых показателей
Как отмечалось ранее (лекция 14), при выходе значений ОП Х(t) за границу Xп рабочей области происходит отказ объекта. Для характеристики надежности объекта при постепенных отказах, связанных со случайным процессом изменения ОП Х(t), могут вычисляться показатели двух типов:
1) вероятность нахождения объекта в работоспособном состоянии (доля работоспособных объектов), т.е. ВБР к наработке (времени) ti P(ti) = P{X(ti) < Xп}. При этом рассматривается случайная величина - значение ОП в момент времени (наработки) ti;
2) показатели наработки (времени) до появления постепенного отказа - пересечение ОП границы Xп поля допуска. Для оценки надежности в этом случае могут использоваться: плотность распределения наработки до отказа f(t) = f[X(t)], функция надежности (ВБР) P(t) = P{T > t}, интенсивность отказов (t).
Рассмотрим модели расчета представленных типов показателей. Считаем, что объект работоспособен, если значения его ОП будут меньше границы Xп поля допуска.
1.1. Вероятность нахождения в работоспособном состоянии
Для фиксированного момента времени ti вероятность того, что объект работоспособен, равна
(1) |
где f(X)i - плотность распределения значений ОП при t = ti , т.е. в i- м сечении случайного процесса Х(t).
В частном случае при нормальном распределении ОП вероятность P(ti) определяется
(2) |
где mxi , Sxi - указанные ранее параметры (числовые характеристики) распределения случайного ОП Хi = {X}i .
Переходя к случайной величине
(3) |
имеющей нормальное распределение с параметрами, соответственно, МО и СКО M{Z} = 0, S{Z} = 1 и плотностью распределения
(4) |
выражение (2) можно записать через функцию Лапласа Ф(z)
(5) |
где Ф(z) определяется по выражению
(6) |
и является табулированной.
1.2. Плотность распределения наработки до отказа
При случайном процессе изменения ОП, имеющем монотонные реализации, плотность распределения времени выхода ОП за границу Xп рабочей области (плотность распределения времени до отказа) для момента ti равна
f (ti) = - dP(t)/dt|t=ti = dQ(t)/dt|t=ti | (7) |
где Q(ti) - вероятность нахождения объекта в неработоспособном состоянии, определяемая через известную по (1) P(ti)
Q(ti) = P{X(ti) Xп} = 1 - P(ti). | (8) |
С учетом выражений (1) и (8) вероятность нахождения объекта в неработоспособном состоянии
(9) |
а с учетом функции Лапласа Ф(z) при нормальном распределении ОП в ti, сечениях
Q(ti) = 0.5 - Ф(z). | (10) |
Дата добавления: 2016-03-20; просмотров: 421;