Случайные события и их классификация
Предмет теории вероятностей. Случайные события и их классификация. Классическое определение вероятности. Общие принципы комбинаторики.
Вероятность относится к числу таких понятий, которыми мы охотно пользуемся в повседневной жизни, совсем не задумываясь об этом. Например, даже наша речь носит отпечаток стихийно-вероятностного подхода к окружающей нас действительности. Мы часто употребляем слова "вероятно", "маловероятно", "невероятно". Уже в этих словах имеется попытка оценить возможность появления того или иного события, т.е. попытка дать количественную оценку этой возможности. Идея выражать числами степень возможности появления тех или иных событий возникла после того, как люди попытались обобщить достаточно большое число наблюдений за явлениями, в которых проявляется свойство устойчивости, т.е. способность повторяться довольно часто.
Например, нельзя заранее определить результат одного подбрасывания монеты. Но если подбрасывать монету достаточно большое число раз, то почти наверняка можно утверждать, что примерно половину раз она упадет на "орла", а половину на "решку". Число подобных примеров, в которых интуитивное представление о численном значении вероятности того или иного события, можно привести очень много. Однако все подобные примеры сопровождаются неопределенными понятиями типа "честное" подбрасывание, "правильная" монета и т.п. Теория вероятностей стала наукой лишь тогда, когда были выявлены основные понятия теории вероятностей, четко сформулировано само понятие вероятности, построена вероятностная аксиоматическая модель.
Любая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, плоскости, линии, поверхности; в математическом анализе – функции, предела, дифференциала, интеграла; в механике – силы, массы, скорости, ускорения. Естественно, что такие понятия есть и в теории вероятностей. Одним из таких основных понятий является понятие случайного события.
СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ
Случайные события и их классификация
Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием). Заметим, что в проведении опыта необязательно должен участвовать сам исследователь. Опыт можно поставить мысленно, или он может протекать независимо от него; в последнем случае исследователь выступает в качестве наблюдателя.
Событие называется достоверным, если оно непременно должно произойти при выполнении определенных условий. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости; утверждение, что вода является находится в жидком состоянии при +200С в нормальных условиях, и т.п. Событие называется невозможным, если оно заведомо не наступит при выполнении определенных условий. Так, невозможным событием является утверждение, что можно извлечь более четырех тузов из обычной колоды карт; или утверждение Мюнхгаузена, что он мог поднять себя за волосы, и т.п. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. Например, выпадение «орла» при бросании монеты; попадание в цель при одном выстреле по мишени и т.п.
В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами. При этом исход того или иного эксперимента должен зависеть от ряда случайных факторов, т.е. любой исход должен являться случайным событием; в противном случае, такими событиями должны заниматься другие науки. Особо следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически). То есть, теория вероятностей изучает лишь такие события, в отношении которых имеет смысл не только утверждение об их случайности, но и возможна объективная оценка доли случаев их появления. В связи с этим, подчеркнем, что теория вероятностей не занимается изучением уникальных событий, как бы они ни были интересными сами по себе. Например, утверждение, что в данном месте в данное время произойдет землетрясение, относится к числу случайных событий. Однако подобные события уникальны, поскольку их нельзя воспроизвести.
Другой пример, событие, состоящее в том, что данный механизм проработает больше года, является случайным, но уникальным. Конечно, каждый механизм индивидуален по своим качествам, но этих механизмов может изготовляться очень много, причем изготовленных в одних и тех же условиях. Испытания многих сходных объектов дает ту информацию, которая позволяет оценить долю числа появления рассматриваемого случайного события. Таким образом, в теории вероятностей имеют дело с повторением испытаний двух типов: 1) повторение испытаний для одного и того же объекта; 2) испытание многих сходных объектов.
В дальнейшем для краткости слово «случайный» будем опускать. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.
События A и B называются несовместными, если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет "орел" или "решка". Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными. Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет; в противном случае такие события называются зависимыми. Например, вероятность события того. что во второй раз из урны, содержащей белые и черные шары, будет вынут белый шар, не зависит от того, какой шар был вынут в первый раз, если он был возвращен обратно. Однако если первый шар не был возвращен обратно, то результат второго извлечения уже будет зависеть от первого, ибо состав шаров в урне уже изменится в зависимости от результата первого извлечения.
Вопрос. Зависимы или нет несовместные события?
Дата добавления: 2016-03-10; просмотров: 1719;