РАСЧЕТНЫЕ НАГРУЗКИ, КОЭФФИЦИЕНТЫ ЗАПАСА
Условие прочности (1) записано через напряжения, которые вычисляются через внешние нагрузки, приложенные к конструкции. Пусть внешние нагрузки определены с точностью до одного параметра S, а напряжение связано с этим параметром зависимостью
.
Тогда условие прочности (1) можно записать через внешние нагрузки
S < R | (3) |
Здесь через R обозначено предельное значение нагрузки, т.е. такое ее значение, которое приводит к предельному состоянию
.
Величина R, зависящая от свойств материала и условий нагружения, называется несущей способностью или сопротивлением.
При заданном значении S отношение
называется коэффициентом запаса. Он обозначает, что сколько раз нужно увеличить нагрузку, чтобы достичь предельного состояния. Вместо условия прочности (2) можно записать эквивалентное условие
n > 1 | (4) |
Если нагрузка и свойства материала являются случайными, то условия прочности (3) и (4) теряют смысл, их нужно заменить вероятностными условиями типа (2):
P(S<R)=P*,
или
P(n > 1)=P*.
При этом коэффициент запаса п также будет случайным.
Практически расчет на прочность с учетом случайного характера внешних нагрузок и случайных свойств материала проводится следующим образом. Вводится некоторое характерное значение нагрузки [S]. Это значение, называемое допускаемым или нормативным значением, можно найти из условия
P(S<[S])=[PS], | (5) |
где [PS] —; некоторое значение вероятности, называемое обеспеченностью. Аналогично вводится нормативное значение [R] несущей способности
P(R>{R]=[PR]. | (6) |
Отношение
[n]=[R]/[S] | (7) |
называется нормативным коэффициентом запаса. Этот коэффициент зависит от условий нагружения, от свойств материалов, условий работы конструкции, степени ее ответственности и ряда других факторов. Такой коэффициент назначается, исходя из многолетнего опыта эксплуатации конструкций, и для каждого типа конструкций задается нормативно-технической документацией.
В качестве нормативных значений [S] и [R] можно выбрать средние значения соответствующих случайных величин
где Sj и Rj экспериментально полученные значения случайных величин в серии из N опытов. Однако в действующих нормах, в частности, строительных, нормативные значения не совпадают со средними значениями, а сдвинуты в сторону более опасных значений, что связано со значительным разбросом опытных данных около средних значений. Для нагрузки принимается несколько большее значение, а для несущей способности — меньшее
где коэффициенты и находятся из уравнений (5) и (6). Таким образом, нормативный коэффициент запаса (7) вычисляется через средние значения следующим образом:
С учетом случайного характера внешних нагрузок и сопротивлений условие прочности (3) заменяется следующим условием
SP < RP.
Здесь SР —; достаточно редко встречающееся в реальных условиях эксплуатации высокое значение нагрузки, RР —; также достаточно редко встречающееся низкое значение несущей способности. Эти значения называются расчетными. Они находятся из уравнений
(8) | |
(9) |
В правой части уравнений содержатся нормативные значения вероятности безотказной работы, которые близки к единице (0,95; 0,99; 0,999;...).
Расчетные значения нагрузок и несущей способности можно выразить через средние значения этих величин следующим образом:
где коэффициенты kS >1 и kP < 1 находятся из решения уравнений (8) и (9). Расчетные значения связаны с соответствующими нормативными значениями соотношениями
SP = kп[S], RP = ko[R].
Коэффициент
называется коэффициентом однородности (меньше единицы). Другой коэффициент, учитывающий случайный характер несущей способности,
называется коэффициентом однородности (меньше единицы).
Это условие можно заменить равенством
SP=RP/m,
где коэффициент m >1 учитывает условия работы конструкции, степень ее ответственности. С учетом обозначения (7) для нормативного коэффициента запаса получим формулу, учитывающую случайные свойства нагрузки и несущей способности, а также степень ответственности конструкции
[n] = mkп / kо.
Дата добавления: 2016-03-05; просмотров: 525;