ГЛАВА 2. КОЛИЧЕСТВЕННЫЕ АСПЕКТЫ КЛИНИЧЕСКОГО МЫШЛЕНИЯ

 

Ли Голдмен (Lee Goldman)

 

Процесс клинического мышления трудно объяснить. Он основывается на та­ких факторах, как опыт и обучение, индуктивное и дедуктивное мышление, интер­претация фактов, воспроизводимость и ценность которых непостоянны, и интуи­ция, которую бывает трудно определить. Для оптимизации клинического мышле­ния был предпринят ряд попыток с целью проведения количественного анализа многих превходящих факторов, включая определение познавательных подходов, используемых врачом при решении трудных проблем, разработку компьютерных систем поддержки принятия решения, которые призваны выделить наиболее важ­ный элемент в этом процессе, и применение теории принятия решения для пони­мания того, как оно формируется. Каждый из этих подходов внес свой вклад в по­нимание сути диагностического процесса, тем не менее все они сопряжены с. прак­тическими или теоретическими трудностями, что ограничивает их непосредст­венное применение у конкретного пациента.

Тем не менее эти предварительные попытки использовать строгость и логику, заложенные в количественном методе, обеспечили существенное понимание про­цесса клинического мышления, выявили пути его совершенствования и позволили свести к минимуму элементы, снижающие его эффективность. Таким образом, хотя клиническое мышление не может уменьшить сложность или число возникаю­щих проблем, попытки провести количественный анализ этого процесса могут оптимизировать пути их понимания и решения у каждого отдельного больного.

В упрощенном варианте количественное мышление включает пять этапов. Оно начинается с изучения основных жалоб, для чего существуют ключевые вопросы, которые включают в историю настоящего заболевания. Эти вопросы необходимо дополнить данными анамнеза о заболеваниях, перенесенных в не­давнем прошлом, данными физикального осмотра, при котором особое внимание уделяют предположительно пораженным органам. На втором этапе врач может выбрать серию диагностических тестов, каждый из которых в силу своей точности и информативности помогает исследовать возможные гипотезы, возникающие в ходе дифференциальной диагностики. Поскольку проведение каждого из тестов требует определенных материальных затрат, сопровождается в той или иной степени риском осложнений и вызывает иногда дискомфорт, перед их назначе­нием врач должен проанализировать достаточность диагностической информа­ции, полученной при сборе анамнеза и физикальном обследовании. Далее, кли­нические данные должны быть сопоставлены с результатами лабораторных ис­следований, чтобы определить те патологические состояния, между которыми сле­дует проводить дифференциальную диагностику. На четвертом этапе для того, чтобы выработать рекомендации для пациента, необходимо взвесить относитель­ный риск и преимущества дальнейших диагностических и терапевтических меро­приятий. В заключение с выработанными рекомендациями знакомят пациента и после соответствующего обсуждения начинают осуществлять намеченный план лечения. Каждый этап этой упрощенной модели процесса клинического мышления целесообразно проанализировать по отдельности, Ниже приводятся этапы клиничеокого мышления и принятия решения:

1. Изучение жалоб путем клинического исследования (сбор анамнеза и физи­кальное обследование).

2. Назначение диагностических тестов, каждый из которых обладает опреде­ленной точностью и информативностью.

3. Обобщение клинических находок и результатов лабораторных исследо­ваний для разработки возможных вариантов диагноза.

4. Сравнительная оценка риска и преимущества альтернативных вариантов дальнейших исследований.

5. Сопоставление плана лечения с учетом пожеланий больного.

Сбор анамнеза и физикальное обследование. Выше уже говорилось о том, что врачи начинают изучение основных жалоб больного с исчерпывающего сбора анамнеза, который включает многие, если не большинство, вопросы, позволяю­щие получить полное представление о всех системах органов, и путем проведения всеобъемлющего физикального обследования. Однако опытные клиницисты на­чинают строить гипотезу, основываясь уже на основных жалобах и первых отве­тах на вопросы, задавая последующие вопросы в таком порядке, который по­зволяет им оценить первичную гипотезу и при необходимости сократить или внести поправки в перечень возможных диагнозов. Одновременно может разра­батываться только ограниченное число диагностических гипотез, и для подтвер­ждения или отрицания их часто используется одна и та же информация. Подоб­ным же образом из практически неограниченного числа вопросов, которые могут быть заданы, выбирают первоочередные, специфические вопросы, и именно на их основании формируют историю настоящего заболевания. Как правило, из всех ответов выбирают ключевой, например указание на наличие мелены, затем пы­таются найти основные возможные объяснения этому явлению, которые после получения ответов на более детальные вопросы систематизируют таким образом, чтобы можно было выбрать и затем проверить основной диагноз. Этот процесс, который носит название «повторная проверка гипотезы», служит эффективным подходом к диагнозу и ему следует отдавать предпочтение среди других методов, с помощью которых можно пытаться получить всю доступную информацию, преж­де чем формулировать дифференциальный диагноз.

Пропаганда метода повторной проверки гипотезы не исключает необходи­мости системного, тщательного сбора полного анамнеза настоящего заболевания, исследования всех систем организма, изучения семейного, социального анамнеза и проведения .физикального обследования пациента. Например, если больной поступает с жалобами на боли в животе, врач может собрать информацию, ка­сающуюся их локализации и характера, а также выяснить, какие факторы провоцируют или облегчают боли. На основании ответов на первичные вопросы у врача возникает подозрение на какое-либо заболевание и он начинает зада­вать вопросы Ь соответствии с предполагаемым диагнозом. Если характеристики боли позволяют думать о панкреатите, то клиницист может поинтересоваться привычками в отношении потребления алкоголя, приемом диуретиков из группы бензотиодиазида или глюкокортикоидных гормонов. Следует обратить внимание на симптомы, свидетельствующие об одновременном заболевании желчного пузыря, на наличие панкреатита у членов семьи, задать вопросы, направленные на выявле­ние возможной пенетрирующей язвы. Напротив, если жалобы более типичны для эзофагеального рефлюкса, то порядок вопросов должен быть другим. Использо­вание метода повторной проверки гипотезы позволяет врачу получить подробную информацию о том органе, который вероятнее всего поражен, не прибегая к сис­темному и тщательному обследованию всего организма. Данные анамнеза и фи­зикального обследования должны дополнять друг друга. Анамнез нацеливает проведение физикального обследования на определенные органы, в свою очередь результаты физикального обследования должны стимулировать более тщатель­ное изучение конкретных систем и органов.

По мере того, как врач осуществляет на практике процесс клинического мышления, используя данные анамнеза и физикального обследования, может возникнуть целый ряд спорных моментов, которые влияют на правильность про­цесса принятия решения. Прежде всего данные анамнеза могут быть плохо вос­производимы. Это связано с тем, что больной меняет свои ответы, или с тем, что разные врачи по-разному формулируют вопросы и интерпретируют ответы. На­пример, в одном из исследований оценки функционального класса кардиологи­ческих больных двумя врачами совпадали приблизительно в половине случаев. При использовании тщательно разработанных стандартизированных вопросников воспроизводимость, так же как и информативность ответов, достоверно возрас­тает, хотя некоторые пациенты и в этом случае продолжают давать искренние, но противоречивые ответы на вопросы, которые в один и тот же день задают разные опрашивающие. Задавая понятные и по мере возможности конкретные вопросы, можно повысить воспроизводимость и информативность данных анам­неза, но нельзя тем не менее полностью избежать разночтении.

Оценивая воспроизводимость данных при физикальном обследовании, двое исследователей, как правило, приходят к соглашению, если отсутствует какой-либо нечасто встречающийся признак, например увеличение селезенки, но часто расходятся во мнениях, если одному из них кажется, что этот признак присут­ствует у пациента, у которого его быть не должно. Этот принцип нагляднее всего проявляется, если допустить, что любое соглашение всегда возникает случайно, а вероятность случайного соглашения выше, если признак встречается либо очень часто, либо очень редко. Например, если каждый из двух врачей считает, что 90% пациентов имеют какую-либо патологию, например систолический шум в сердце, то их мнения совпадут в 81% случаев, и это совпадение будет только случайным. В некоторых исследованиях воспроизводимости обычных признаков и симптомов, таких как гепатомегалия, частота истинного соглашения не была намного выше, чем частота случайного совпадения мнений. Частота несовпадения мнений может быть уменьшена путем повышения навыков физикального обсле­дования с помощью постоянных тренировок, путем поиска других коррелирую­щих физикальных признаков, путем изучения того, как физикальные данные коррелируют с результатами диагностических тестов. В связи с этим, когда врач вдруг обнаруживает какой-либо субъективный клинический признак, по поводу которого могут возникнуть разногласия, например, непредвиденную спленомегалию, он должен, попытаться найти другие изменения, которые могли бы подтвер­дить ее вероятность, например такие, как гепатомегалия или лимфаденопатия. В некоторых случаях следует рассматривать возможность проведения диагности­ческих исследований, таких как сканирование печени и селезенки, что позволяет объективизировать клинические находки.

Эти замечания по поводу факторов, снижающих воспроизводимость и ин­формативность данных анамнеза и физикального обследования, ни в коем случае не принижают их чрезвычайную важность для клинического мышления. Более того, они подчеркивают необходимость внимательного и тщательного их прове­дения.

Когда врач на основании данных анамнеза и физикального обследования выносит суждение о диагнозе, он редко бывает в нем полностью уверен. В связи с этим более целесообразно говорить о диагнозе с точки зрения его вероятности. Все еще очень часто эта вероятность выражается не в форме процентов, а с по­мощью таких выражений, как «почти всегда», «обычно», «иногда», «редко». По­скольку разные люди вкладывают различную степень вероятности в одни и те же термины, это ведет к возникновению недопонимания между врачами или между врачом и пациентом. Врачам следует как можно более точно и при воз­можности используя цифры давать свои заключения и, если это осуществимо, использовать для выражения вероятности количественные методы. Например, вместо того чтобы говорить, что вероятность обнаружения карциномы толстой кишки рентгенологическими методами мала, лучше, если это возможно, предста­вить точные данные о диагностике новообразования по данным рентгенографии. Вероятность обнаружения карциномы в 10—15% случаев может быть интерпре­тирована как «небольшая», однако с клинических позиций в этом-случае требует­ся дальнейшее уточнение диагноза, поскольку последствия гиподиагностики по­тенциально операбельной опухоли могут быть самыми серьезными.

Хотя наличие таких количественных показателей было бы очень желательно, они обычно отсутствуют в клинической практике. Даже опытные клиницисты часто не в состоянии точно определить вероятность развития тех или иных изме­нений. Имеется тенденция к гипердиагностике относительно редких заболеваний. Особенно трудно бывает количественно оценить вероятность, которая может быть очень высокой или очень низкой. Например, врач может не знать, какова точная вероятность наличия бактериального менингита или другого заболевания, которое может быть диагностировано с помощью люмбальной пункции у пациента с сильной головной болью: 1 случай из 20 или 1 случай из 200. В обоих случаях вероятность низка, но тем не менее от нее зависит принятие решения о том, делать или нет люмбальную пункцию.

Поскольку установление достоверных диагностических критериев является краеугольным камнем клинического мышления, для разработки статистических подходов к улучшению диагностического предвидения используется накопленный клинический опыт, который часто бывает представлен в форме компьютерных банков данных. В подобных исследованиях обычно идентифицируют факторы, на­ходящиеся в унивариантной корреляции с тем или иным диагнозом. Затем эти унивариантные корреляты могут быть включены в многофакторный анализ, что позволяет определить, какие из них являются достоверными независимыми пре­дикторами диагноза. Некоторые виды анализа позволяют идентифицировать важ­ные факторы предсказания диагноза и затем определить их «вес», который может быть при дальнейшем математическом расчете трансформирован в вероятность. С другой стороны, анализ позволяет выделить ограниченное число категорий пациентов, каждая из которых имеет собственную вероятность наличия того или иного диагноза.

Эти количественные подходы к постановке диагноза, которые часто назы­вают «правилами предсказания», особенно полезны, если они представлены в удобном для использования виде и если их ценность была широко изучена на достаточном числе и спектре пациентов. Например, на основании тщательного отбора ключевых вопросов, используемых при сборе анамнеза, и данных, полу­чаемых при физикальном обследовании, которые позволяют предсказать причины наиболее частых жалоб, предъявляемых амбулаторными больными, были разра­ботаны алгоритмы диагностических исследований, которые могут осуществляться не врачом и требуют вмешательства врача лишь при необходимости. Используя эти алгоритмы, не имеющий врачебного образования персонал под общим руко­водством врачей может с меньшими затратами, но не менее эффективно осу­ществлять ту же работу, что и врач, у которого нет такого помощника.

Для того чтобы такие правила предсказания могли оказать реальную по­мощь клиницистам, они должны быть разработаны на представительных группах больных с использованием доступных воспроизводимых тестов с тем, чтобы полу­ченные результаты могли быть применены в медицинской практике повсеместно. Поскольку только меньшая часть из опубликованных правил предсказания при­держивалась строгих критериев, таких как число и спектр обследованных, а так­же проспективное подтверждение результате», большинство из них пока непригодно для повседневного клинического использования. Более того, многие правила предсказания не могут оценить вероятность каждого диагноза или исхода, с кото­рыми сталкивается клиницист.

Как подчеркивалось в гл. 1, сбор анамнеза и физикальное обследование слу­жат и другим важным целям. Они позволяют врачу оценить эмоциональный статус пациента, понять, как нарушения здоровья сочетаются с условиями об­щественной и семейной жизни больного, они способствуют возникновению у па­циента доверия к врачу, которое так необходимо для достижения согласованности в предстоящих действиях.

Диагностические исследования: показания, точность и ценность. Для назна­чения диагностических исследований должны быть специфические показания. Чтобы соответствовать этим показаниям, исследования должны быть достаточно точными. Кроме того, они должны быть как можно менее дорогостоящими и (или) наименее опасными из всех возможных в данном случае тестов. Нет абсолютно точных диагностических методов, и врачам часто бывает трудно интерпретировать их результаты. В связи с этим чрезвычайно важно знать несколько наиболее часто используемых при анализе результатов исследований и в эпидемиологии терминов, включая распространенность, чувствительность, специфичность, поло­жительную предсказательную ценность и отрицательную предсказательную цен­ность (табл. 2.1).

Хотя в сообщениях о точности диагностических тестов обычно используют термины положительная и отрицательная предсказательная ценность, эти расчетные величины зависят от распространенности заболевания в изучаемой популя­ции (табл. 2.2). Тест, обладающий определенной чувствительностью и специфич­ностью, имеет различную положительную и отрицательную предсказательную цен­ность, если применяется в группах с различной распространенностью заболе­вания. Например, умеренные изменения уровня щелочной фосфатазы у молодого человека с подтвержденной лимфомой свидетельствуют о нарушении функции печени вследствие наличия опухоли, т. е. этот тест скорее всего является истинно положительным, в то время как выявление таких же уровней щелочной фосфата­зы при выполнении рутинных профилактических анализов крови у человека того же возраста без клинических симптомов какого-либо заболевания маловероятно указывает на наличие опухоли, т. е. в этом случае результат скорее всего ложно-положительный.

 

Таблица 2.1. Систематические термины, наиболее часто используемые в эпидемиологических и диагностических исследованиях

 

Результаты теста Патологическое состояние
  Имеется отсутствует
Положительные а (истинно поло­жительные) б (ложноположительные)
Отрицательные в (ложноотрица-тельные) г (истинно отрицательные)
Распространение (априорная вероятность) =(а+в)/(а+б++В+Г) == число больных/общее число обследованных
Чувствительность =а/(а+в) == число истинно положи­тельных результатов/ общее число больных
Специфичность ==г/(б+г) == число истинно отрица­тельных результатов/чис­ло пациентов без данного заболевания
Частота ложноотрицательных результатов =в/(а+в) = число ложноотрицатель­ных результатов/общее число больных
Частота ложноположительных результатов =б/(б+г) = число ложноположительных результатов/число пациентов без данного заболевания
Положительная предсказа­тельная ценность =а/(а+б) == число истинно положи­тельных результатов/чис­ло всех положительных результатов
Результаты теста Патологическое состояние
имеется отсутствует
Отрицательная предсказа­тельная ценность Общая точность =г/(в+г) =(а+г)/(а+б+ +в+г) =число истинно отрица­тельных результатов/ число всех отрицательных результатов == число истинно положи­тельных и истинно отри­цательных результатов/ число всех результатов

 

Хотя чувствительность и специфичность какого-либо теста не зависят от рас­пространенности заболевания (или процента больных, у которых имеется забо­левание, из всех обследованных пациентов), они зависят от состава группы па­циентов, у которых этот тест был использован. Например, чувствительность и спе­цифичность метода сцинтиграфии миокарда с пирофосфатом технеция с целью выявления инфаркта (гл. 179) будут практически идеальны, если одну популя­цию составляют лица с типичным инфарктом миокарда, имеющие электрокардио­графические изменения, характерные для трансмурального инфаркта миокарда, ярко выраженный подъем миокардиального изофермента креатинкиназы (КФК), а другую — здоровые студенты-медики. Если, однако, не изменяя распространен­ности заболевания в исследуемой популяции, состав обследованных с заболе­ванием и без заболевания изменить, включив пациентов с другими показателями, например, если популяция больных с инфарктом миокарда состояла бы главным образом из пациентов, у которых инфаркт миокарда не сопровождался измене­нием зубца Q и умеренным или пограничным подъемом КФК-МБ, а популяция без острого .инфаркта миокарда включала бы пациентов со старым инфарктом и нестабильной стенокардией, чувствительность и специфичность метода могли бы измениться очень заметно. В этой ситуации чувствительность и специфичность сцинтиграфии миокарда с пирофосфатом технеция не только ниже, чем в первом случае, из-за того, что изменился состав пациентов с и без заболевания, но, что значительно более существенно, эти показатели становятся настолько низкими, что тест теряет клиническое значение. Этот пример иллюстрирует также методоло­гические проблемы, которые могут возникнуть, если использовать данные одного исследования в разных группах пациентов или если объединять данные разных исследований, в которых участвовали разнородные группы больных.

 

Таблица 2.2. Изменение положительной и отрицательной предсказательной ценности одного и того же теста в зависимости от исходной вероятности наличия заболевания

 

В некоторых ситуациях неточное знание чувствительности и специфичности теста в изучаемой группе пациентов может ограничить его клиническую ценность. Поскольку врач редко знает (или может знать) популяцию пациентов, на ко­торой назначаемый им тест был стандартизован, получаемые результаты обла­дают информацией, намного менее достоверной, чем принято думать. Более того, для любого диагностического теста увели­чение чувствительности будет сопровож­даться снижением специфичности. Чем ближе кривая подходит к верхнему левому углу, тем выше динамическая ценность те­ста; чем ближе к пунктирной линии — тем ниже. При решении вопроса о том, что является нормой, а что болезнью, необходимо определить, какая чувстви­тельность и специфичность наиболее при­годны в данной клинической ситуации.

 

 

Рис. 2.1. Графическое изображение внутреннего несоответствия чувстви­тельности и специфичности.

 

Может быть очень трудно отдифференцировать случайную лабораторную ошибку от ложноположительных или ложноотрицательных результатов исследования вследствие наличия у пациента в этот момент еще какого-либо процесса, который может повлиять на получаемые данные, например повышение уровня КК у па­циента, который перед обследованием по поводу загрудинных болей выполнил напряженную физическую работу.

Поскольку нельзя ожидать, что какая-либо величина или производный пока­затель в отдельности могли бы обладать одновременно превосходной чувстви­тельностью и специфичностью, часто бывает необходимо определить, какой пока­затель является наиболее ценным и необходимым для принятия решения. Графи­ческое изображение (рис. 2.1) кривой, связывающей обсуждаемые характеристи­ки теста, которое показывает неизбежность выбора между стремлением к высо­кой чувствительности, как, например, при оценке электрокардиограммы, заре­гистрированной во время физической нагрузки, как патологической, если на ней имеется депрессия сегмента ST .не менее 0,5 мм, или высокой специфичности, как, например, при определении электрокардиограммы, зарегистрированной во время физической нагрузки, как патологической только в том случае, если депрес­сия сегмента ST составляет не менее 2,0 мм, может помочь клиницисту понять смысл различных определений «положительных» результатов теста. Подобное графическое изображение свидетельствует о том, что результаты тестов могут быть определены как нормальные или патологические в зависимости от того, учи­тывается заболевание, если тест обладает высокой специфичностью, или исклю­чается, если тест обладает высокой чувствительностью. Разные тесты могут обла­дать различной чувствительностью и специфичностью. Чувствительность и спе­цифичность более достоверных тестов выше, чем недостоверность тестов.

Одним из примеров чувствительных тестов служит М-вариант эхокардиографии, который используют для исключения тяжелого аортального стеноза у взрослых: чувствительность этого теста для аортального стеноза приближается к 100%, при этом неизмененная эхограмма аортального клапана фактически исключает диагноз аортального стеноза у взрослых. К сожалению, этот чувстви­тельный тест не очень специфичен. В связи с этим многим больным, у которых при эхокардиографии выявлены изменения аортальных клапанов, требуется про­ведение дальнейших исследований (например, доплеровская эхокардиография, а возможно, и катетеризация полостей сердца) для установления диагноза (гл. 187). Наиболее распространенным примером умеренно специфичного теста является использование электрокардиограммы для диагностики острого инфаркта миокарда. Поскольку высокая специфичность зависит от характеристики группы исследуемых больных, появление в двух или более соседних отведениях новых подъемов сегмента ST, превышающих 1,0 мм, у пациента, который поступил в срочном порядке с длительными загрудинными болями, напоминающими боли при ишемии миокарда, достаточно специфично, т. е. маловероятно, что эти дан­ные являются ложноположительными. В этих случаях госпитализация больных в отделение интенсивной терапии фактически всегда целесообразна. Однако этот показатель не является чувствительным, поэтому, если бы в отделение интенсив­ной терапии госпитализировали больных только с подобными электрокардиогра­фическими изменениями, почти половине больных, поступающих в срочном поряд­ке в стационары, необходимая медицинская помощь не была бы оказана.

Для того чтобы оптимизировать клиническую ценность диагностических тестов, полезно накопить собственный опыт работы с ними. Часто получаемые при этом результаты будут значительно отличаться от публикуемых в литературе. Сообщения об эффективности какого-либо теста должны подчеркивать его точ­ность по сравнению с независимым стандартом. Этот тест должен быть использо­ван у целого ряда больных с различной тяжестью изучаемого заболевания, а так­же у больных, у которых имеются нарушения, являющиеся составной частью дифференциального диагноза. Следует знать воспроизводимость теста, а также обозначить «нормальные пределы» получаемых при использовании этого теста значений. В некоторых случаях проведение исследования или манипуляций, необ­ходимых для установления диагностической ценности данного теста, настолько рискованно, что только узкий круг пациентов может быть включен в исследо­вание, как, например, при оценке информативности абдоминальной компьютерной томографии у больных с подозрением на карциному поджелудочной железы. Если больным с «отрицательными» результатами компьютерной томографии не будет затем выполнена лапаротомия или патологоанатомическое исследование, то ни чувствительность, ни специфичность использования компьютерной томо­графии с целью выявления Карциномы поджелудочной железы не сможет быть установлена. В подобных ситуациях установленная ценность диагностического теста нельзя считать точн ой, поскольку она не была подтверждена другим ме­тодом.

Объединение клинических данных и результатов лабораторных исследований.Хотя, как было показано выше, ни клинические данные, ни результаты лаборатор­ных исследований не могут претендовать на абсолютную точность, их объедине­ние может скорее привести к правильному диагнозу, чем их использование по отдельности. Зная до выполнения исследования вероятность наличия у пациента того или иного заболевания (априорная вероятность) и зная чувствительность и специфичность проводимого исследования, можно рассчитать вероятность, кото­рая будет получена после выполнения исследования,—апостериорная вероят­ность. Обычным математическим методом объединения клинических данных и ре­зультатов лабораторных исследований является байисьяновский анализ, который может быть представлен в виде соотношение (счет) —вероятность (табл. 2.3). Априорная вероятность может быть выражена в виде счета (как, например, на бегах) и умножена на вероятное отношение (которое представляет из себя чув­ствительность теста, разделенную на разность между 1 и специфичностью теста), что позволяет получить апостериорное соотношение (счет), которое в свою оче­редь может быть переведено в апостериорную вероятность. Этот подход может быть использован в любой ситуации, когда врач имеет клинические данные, чтобы определить априорную вероятность диагноза и объединить их с результатами, а значит, и с чувствительностью и специфичностью диагностического теста. Мно­гие клинические ситуации могут быть настолько сложными, что определение исходной вероятности какого бы то ни было диагноза или чувствительности и спе­цифичности каждого теста, который может быть выполнен в отдельности, или последовательно выполняемых тестов нецелесообразно. Тем не менее предпри­нимаемые в этом направлении попытки будут стимулировать критическое мышле­ние, выявлять противоречия, способствовать возникновению новых замыслов оригинальных исследований или же требовать пересмотра прошлого опыта, чтобы в последующем облегчить использование байисьяновского анализа для объедине­ния клинических данных и результатов лабораторных исследований.

Результаты байисьяновского анализа часто могут быть выражены графиче­ски, как, например, значение электрокардиограммы, зарегистрированной во время физической нагрузки, для выявления ишемической болезни сердца (рис. 2.2; см. также гл. 189). Эта серия кривых показывает также, как следует рассматри­вать результаты теста, которые могут попасть в «серую зону», не будучи явно положительными или явно отрицательными.

 

Таблица 2.3. Пример использования байисьяновского анализа для объединения вероятности с результатами исследования для расчета апостериорной вероятности

 

" Чувствительность = вероятность положительного результата у па­циента с заболеванием

0 (1—специфичность) = вероятность положительного результата у пациента без заболевания

" (1—чувствительность) ==вероятность отрицательного результата у пациента с заболеванием г Специфичность = вероятность отрицательного результата у паци­ента без заболевания

 

Одним из ключевых допущений, свойственных большинству подобных анали­зов, является то, что корреляция между априорной вероятностью и результатами

 

 

Рис. 2.2. Влияние переносимости теста с физической нагрузкой на вероятность наличия ИБС.

 

Априорная вероятность наличия ИБС будет уточнена результатами электрокардио­граммы, зарегистрированной во время физической нагрузки, на основании чего будет получена апостериорная вероятность наличия ИБС. Обратите внимание на то, что обнаружение депрессии сегмента ST менее 1 мм уменьшает вероятность наличия ИБС, в то время как депрессия сегмента ST не менее 1 мм повышает вероятность. Например, если у пациента, исходная вероятность наличия ИБС у которого составляла 90%, что приблизительно соответствует вероятности, наблюдаемой у мужчины среднего возраста с типичными стенокардитическими симптомами, во время теста с физической нагрузкой отмечена депрессия сегмента ST в пределах 2—2,49 мм, то апостериорная вероятность наличия ИБС у него увеличится до 99,5%. Напротив, если подобные изменения во время теста с нагрузкой будут зарегистрированы у пациента, исходная вероятность наличия ИБС у которого составляет 30%, что можно ожидать у пациентов с атипичными загрудинными болями, то величина апостериорной вероятности у него составит около 90%. У пациента без каких-либо клинических симптомов заболевания, у которого априорная вероятность наличия ИБС всего лишь около 5%, аналогичные результаты теста с физической нагрузкой повысят апостериорную вероятность до 53%. Таким обра­зом, один и тот же результат теста в сочетании с различной априорной вероятностью позволяет получить различные величины апостериорной вероятности (с разрешения New England Journal of Medicine, R. D. Rifkin, W. B. Hood: Bayesian analysis of electrocardiographicexercise stress testin.—N. Engl. J. Med., 1977, 297, 684) теста не больше, чем можно ожидать от случайного совпадения. Если диагности­ческий тест просто дублирует информацию, которая была получена при клиниче­ском обследовании, то он может оказать дополнительную помощь в решении вопроса, имеется или отсутствует заболевание. Например, выявление при физи­кальном обследовании у больного с карциномой толстой кишки желтухи является достоверным индикатором возможных метастазов в печень. Может быть определе­на и степень гипербилирубинемии, но уровень билирубина у больного с клини­чески выраженной желтухой не несет существенной самостоятельной информации, дополняющей ту, которая была получена при тщательном физикальном обсле­довании. При объединении лабораторных и клинических данных результаты диагностических исследований являются полезными только в том случае, если они дополняют результаты анамнеза и физикального обследования новой информа­цией, причем полученной с минимальными затратами и риском. Если диагности­ческий тест (такой как ретроградная холангиография, выполняемая у больного с гипербилирубинемией) позволяет получить информацию, недоступную при не­посредственном обследовании, то маловероятно, что его результаты могут быть связаны с первичной вероятностью в большей степени, чем можно ожидать при случайном совпадении.

Диагностическое исследование только тогда оказывает влияние на ведение конкретного пациента, если оно в такой степени может изменить диагностическую вероятность, что полученная новая вероятность потребует пересмотра плана об­следования или лечения, или если это исследование явится частью комплекса исследований, который также превысит этот порог. Например, у больного подозревают развитие эмболии сосудов легких. Вероятность этого диагноза, ос­нованная только на данных клинического обследования, составляет 50%. Опре­деление вентиляционно-перфузионных отношений с помощью сканирования лег­ких, метода, обладающего «низкой вероятностью», может уменьшить вероят­ность диагноза эмболии сосудов легких. Однако, если стоит задача исключить эмболию с максимально возможной степенью достоверности, то потребуется про­ведение легочной ангиографии (гл. 211).

Поскольку диагностические исследования часто не позволяют получить важ­ную новую информацию, даже если нх результаты достаточно точны, перед их назначением следует задать себе несколько вопросов. Первое, какова вероят­ность того, что имеется именно подозреваемое заболевание? Второе, каковы бу­дут клинические последствия, если диагноз будет поставлен неправильно, или если больной будет получать лечение по поводу заболевания, которого у него нет? Третье, какова вероятность того, что результаты диагностических исследований потребуют пересмотра диагноза или лечения? Врач должен учитывать все ва­рианты диагноза, риск развития осложнений, вероятность получения новой ин­формации и затраты, которые для этого потребуются, а также неблагоприятные последствия задержки проведения исследования, так как наблюдение всегда было одним из распространенных методов диагностики.

Сравнение риска и преимущества метода исследования: аналитический под­ход к принятию решения. Основой концепции о том, что знание вероятности может привести к принятию решения, является допущение, которое заключается в том, что можно достичь разумного результата, зная соотношение риска (или затрат) и преимуществ различных методов и того, при какой вероятности это соотношение меняется в противоположную сторону. Анализ принятия решения является организованным процессом оценки подобных ситуаций, который позво­ляет идентифицировать ключевые моменты и проблемы.

Одна из проблем использования аналитического подхода к принятию реше­ния в- трудных клинических ситуациях заключается в том, что аналитическое решение не является чем-то принципиально отличным от тех данных, на которых он базируется, В некоторых случаях попытка аналитического подхода к решению сложной клинической проблемы может не дать иной информации, кроме той, что важные данные, которые требуются для проведения анализа, отсутствуют и что дополнительные исследования в этом направлении должны быть выполнены. Кроме того, если клиницисты сомневаются л выборе плана обследования и ле­чения, то формальный анализ может указать, что различия между разными под­ходами очень незначительны. В этих случаях формальный анализ может содер­жать внутреннюю ошибку, которая не зависит от воли врача. Даже когда польза от аналитического решения очевидна, врач не всегда может иметь достаточно времени для выполнения оценок и расчетов, необходимых для принятия решения у постели больного. Тем не менее значение аналитического подхода к принятию решения заключается в том, что он объединяет доступную информацию, при­нуждает к строгому мышлению и обнаруживает наши сомнения и недостаток, знаний.

Аналитический подход к принятию решения условно состоит из двух основ­ных положений процесса принятия решения. первое, решения (или варианты), доступные врачу, и второе, возможные ситуации, к которым может привести каж­дое решение. Для того чтобы проиллюстрировать этот процесс в действии, можно рассмотреть принятие решения о том, следует ли выполнять биопсию мозга, про­водить лечение или наблюдать при подозрении на наличие герпетического энце­фалита (гл. 136). На рис. 23 изображена схема решения этой проблемы. Квад­рат, обозначенный буквой А. является тем решением, которое врач должен при­нять. Круги, обозначенные буквами от Б до И. указывают возможные исходы, каждый из которых имеет свою определенную вероятность. В этом анализе пер­вичными вариантами являются: проводить лечение видарабнном (Vidarabin), относительно токсичным препаратом, не проводить лечение видарабином или вы­полнить биопсию мозга, с тем чтобы использовать ее результаты для принятия решения о лечении. И назначение видарабина и биопсия могут привести к раз­витию осложнений.

 

 

Рис. 2.3. Схема принятия решения для проведения обследования и лечения при подозрении на энцефалит, вызванный вирусом простого герпеса.

Квадрат обозначает решение, круги — его последствия. Детали см. в тексте (с разре­шения М. Barza, S. G. Paiiker. The decision to biopsy, treat, or wait in suspected herpes encephalitis. --Ann. Intern. Med., 1980, 92, 644).

 

Каждый из исходов для пациента обычно имеет определенную «пользу». т. е. относительное предпочтение того или иного исхода, где 1,0 означает идеаль­ный исход, а 0 — наихудший из всех возможных исходов. Каждая конечная ветвь схемы принятия решения имеет определенную пользу, соответствующую данному исходу, и «ожидаемое значение» каждой конечной ветви рассчитывается путем умножения вероятности на пользу. Для того чтобы рассчитать «ожидаемое зна­чение» каждого из трех возможных вариантов действия (см. рис. 2.3, А), следует сложить ожидаемые значения каждой из конечных ветвей, которые исходят из этого пункта. Наиболее предпочтителен тот вариант действия, при котором, при учете всех возможных исходов, получается максимальное ожидаемое значение, которое является суммой произведения вероятности, умноженной на пользу при каждом возможном исходе.

Осуществляя любой аналитический подход, следует знать или определить относительные вероятности, что часто требует предположений. Далее, польза может быть установлена для каждого из этих исходов. Основным практическим недостатком аналитического анализа является частый субъективизм при оценке пользы. Также бывает очень трудно количественно соотнести увеличение продол­жительности жизни с качеством прожитых лет, например, при оценке того, как токсичность препарата или инвалидность вследствие заболевания или лечения снизит качество предстоящей жизни.

Результаты и информативность аналитического подхода зависят от величин вероятности и пользы, которые используют при расчете, поэтому обязательным является применение чувствительных методов. При этом следует анализировать различные вероятности для того, чтобы можно было определить, меняются ли при этом выводы. Например, при проведении анализа, схематически представлен­ного на рис. 2.3, токсичности видарабина, серьезным осложнениям при биопсии мозга, возможности получения ложноположительных или ложноотрицательных результатов биопсии должна соответствовать определенная вероятность. В дан­ном конкретном случае мы пришли к выводу, что наблюдение, т. е. отказ и от лечения, и от биопсии, является наиболее предпочтительным вариантом действия, если вероятность наличия герпетического энцефалита менее 3%. При вероятности наличия заболевания от 3 до 42% рекомендуют биопсию мозга, а при вероятности, превышающей 42%, целесообразно немедленно начинать лечение видарабином. Однако риск развития герпетического энцефалита, значительно превышающий 42%, встречается очень редко. Следовательно, эмпирическое назначение видара­бина раньше, чем получены результаты биопсии мозга, встречается редко. Авторы показали, что эти выводы не изменяются при варьировании величин вероятности возникновения нескольких ситуаций. Если бы полученные в результате анализа выводы изменились при малейших изменениях допустимых вероятностей, на кото­рых был основан анализ, то это указывало бы на то, что данный анализ не явля­ется надежным для принятия решения.

Иногда аналитический подход демонстрирует явное и яркое преимущество одного подхода перед другим. В другом случае различия между двумя варианта­ми ведения больного могут быть незначительными, каждый из них может быть достаточно целесообразным. В такой ситуации основными в принятии решения становятся вторичные факторы, которые не могут быть учтены при формальном анализе, такие как отношение пациента к предполагаемой врачебной тактике или собственный опыт врача по использованию данного метода. Врач, который аналитически подходит к принятию решения, должен поэтому определить вероят­ность возникновения любого возможного исхода, основываясь на своем опыте и опыте учреждения, где он работает, в ведении подобных больных, а также изу­чив литературу по данному вопросу. Даже когда результат анализа кажется ясным, у врача или пациента может возникнуть подозрение, что данная ситуация может быть исключением из правил. Кроме того, даже самый лучший анализ, как и вся клиническая интуиция, основаны на предположениях. Все это допускает дальнейшее обсуждение проблемы.

В изложенном примере, в котором обсуждалось ведение пациента с возмож­ным герпетическим энцефалитом, в результате аналитического решения была вы­работана тактика, учитывающая положительный исход, но не затраты, при кото­рых он может быть достигнут. При определении политики здравоохранения может быть использован формальный анализ соотношения затрат и эффективности, который позволит оценить, сколько денег должно быть израсходовано для того, чтобы была достигнута единица прибыли. В качестве такой единицы часто ис­пользуют сохраненную жизнь, год сохраненной жизни или соотношение качества жизни с годом сохраненной жизни, учитывая при этом качество жизни на протя­жении этого времени. Например, стоимость 1 года проведения гемодиализа в ста­ционаре может составить 35000 долларов по курсу 1986 г. Эта цифра включает только прямые медицинские расходы, но не опосредованную стоимость, связан­ную с такими факторами, как потеря времени или переезды или польза от спо­собности пациента выполнять работу. В некоторых случаях способность пациента поддерживать продуктивную работоспособность может частично или полностью компенсировать прямые медицинские затраты.

Хотя многие варианты анализа в настоящее время используют показатель соотношения затрат и эффективности, при котором количество истраченных денег сравнивается с количеством сохраненных жизней или лет жизни, в некоторых исследованиях используют показатель соотношения затрат и пользы, при этом вместо сохраненной жизни учитывают количество получаемых или сохраненных денег. Например, анализ вакцинации против краснухи, который попытался вы­разить в долларах возможность при вакцинации предотвратить развитие синдрома врожденной краснухи и связанные с ним расходы, показал, что оптимальной национальной политикой должна быть вакцинация всех девочек в возрасте 12 лет.

Этика и желания больного. Как количественное, так и неколичественное кли­ническое мышление требует от врача учета этических факторов так же, как и точки зрения и желаний пациента. Подробное обсуждение этих вопросов не вхо­дит в задачи данной главы, однако важно подчеркнуть, что желания пациента по поводу различных вариантов лечения могут не совпадать с тем, что предлагает врач, основываясь на своих клинических взглядах или результатах клинического подхода к принятию решения. Например, многие больные раком гортани хирургическому вмешательству предпочитают рентгенотерапию, уровни излечения при ко­торой низкие, но выше вероятность сохранения речи. Врач обязательно должен установить, что для больного важнее всего («качество жизни»), прежде чем на­чинать разрабатывать различные варианты обследования и лечения, основываясь лишь на количественных подходах, своих субъективных впечатлениях, предпочте­ниях или суждениях о том, что для больного может быть лучше. В связи с этим окончательный план должен отражать согласие между достаточно информиро­ванным пациентом и доброжелательным врачом, который хорошо представляет себе данную клиническую ситуацию и значение возможных исходов для данного конкретного больного.

 

Список литературы

 

Elstein A. S. et al. Medical Problem Solving. An Analysis of Clinical Reasoninig. -- Cambridge: Harvard University, 1978.

Goldman L. et al. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: Advantages of a new specific activity scale.— Circulation, 1981, 64, 1227.

Greenfield S. et at. Efficiency and cost of primary care by nurses and physician assistants.— N. Engl. J. Med., 1978, 305, 982.

McNeil В. ]. et al. Speech and survival: Trage offs between quality and quantity of life in laryngeal cancer. — N. Engl. J. Med., 1981, 298, 305.

Ransohoff D. P., Feinstein A. R. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. — N. Engl. J. Med., 1978, 299, 926.

Roberts S. D. et al. Cost-effective care of end-stage renal diasease: A billion dollar question.—Ann. Intern. Med., 1980, 92, 243.

Schoenbaum S. С. et al. Benefit-cost analysis of rubella vaccination policy. — N. Engl. J. Med., 1976, 294, 303. Weinstein M. С., Feineberg H. V. Clinical Decision Analysis. — Philadelphia- Saunders, 1980.

 

 








Дата добавления: 2016-03-05; просмотров: 855;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.04 сек.