Нью Йорк, 26-е Мая 1888. 10 страница

Также не следует полагать, что температура воздушного конденсатора может дать даже приблизительное представление о потерях при нагревании, поскольку в таких случаях нагревание должно происходить намного быстрее. Это происходит потому, что в дополнение к обычному излучению, происходит очень активное выделение тепла независимыми носителями, и не только аппаратура, но и воздух на некотором расстоянии от нее нагревается от многочисленных столкновений.

Благодаря этому, в экспериментах с такой катушкой, повышение температуры может отчетливо наблюдаться только тогда, когда тело, подсоединенное к катушке, очень небольшое. Но в аппаратах большого размера, может быть нагрето даже тело значительного объема, как, например, тело человека. Я думаю, что квалифицированные врачи могли бы задуматься над вопросом о практическом использовании таких экспериментов, которые, если прибор правильно спроектирован, не должны представлять ни малейшей опасности.

Здесь возникает вопрос, представляющий некоторый интерес в основном для метеорологов. Каково поведение Земли? Земля — это воздушный конденсатор, но насколько совершенен этот конденсатор, или это только сток для энергии? Почти не вызывает сомнений факт, что при столь малом возбуждении, которое порождается в результате эксперимента, Земля ведет себя почти как идеальный конденсатор. Но он может быть и другим, когда вследствие резких возмущений, происходящих в небе, возникают колебания его заряда. Возможно, что в этом случае, как было заявлено ранее, только небольшая часть энергии колебаний может быть выброшена в пространство в виде долгих эфирных излучений, а большая часть энергии, как я полагаю, тратится на столкновения и иные воздействия молекул друг на друга, и выбрасывается в пространство в форме коротких тепловых и, возможно, световых волн. Так как и частота колебаний заряда, и потенциал очень велики, то энергия, преобразуемая в тепло, может быть весьма значительной.

Так как плотность должна распределяться неравномерно вследствие неровности поверхности Земли, или за счет различных состояний атмосферы в разных местах, то получающийся эффект, соответственно, должен меняться от места к месту. Поэтому и возникают значительные изменения температуры и давления атмосферы в любой точке поверхности Земли. Изменения могут быть постепенными или очень внезапными, поэтому, в соответствии с природой общего возмущения, и возникают дождь, шторм или локальные изменения погоды в любую сторону.

Из приведенных выше замечаний можно увидеть, что свою важность фактор потерь энергии в воздухе вблизи от заряженной поверхности приобретает тогда, когда велика электрическая плотность, а частота импульсов — огромна. Но, как уже говорилось, это явление подразумевает, что воздух изолирован, то есть, состоит из независимых носителей заряда, погруженных в изолирующую среду. Это утверждение можно рассматривать как причину только тогда, когда давление воздуха близко к обычному (может быть чуть больше), либо, когда оно очень низкое. Когда воздух слабо разрежен и электропроводен, также происходят потери энергии. Конечно, в этом случае, при очень большой плотности, в пространство может быть рассеяно большое количество энергии даже при постоянном напряжении, или при импульсах низкой частоты.

Когда давление газа очень низкое, то электрод нагревается сильнее, так как скорость молекул намного выше. Если газ вокруг электрода сильно сжат, то любые перемещения молекул, а. следовательно и их скорость очень малы, поэтому и нагревание незначительно. Но если в этом случае существенно возрастет частота, то электрод нагреется до высокой температуры, а также, если снизится давление газа. Фактически, необходимо только создать разрежение в лампе, так как мы не можем получить (а возможно, и передать) ток требуемой частоты.

Вернемся к электроду в лампе. Он имеет очевидные преимущества в таких лампах, где нужно максимально ограничить распространение тепла от электрода за счет снижения циркуляции воздуха в ней. Если взять очень маленькую лампу, то нагревание в ней будет ограничено лучше, чем в большой, но она может не иметь достаточной емкости для работы от катушки, а если так, то стекло может сильно нагреваться. Самым простым решением в этой ситуации является использование сферы требуемого размера, но при этом нужно поместить маленькую лампу, диаметр которой правильно рассчитан, над тугоплавким электродом, аходящимся внутри сферы. Такая конструкция приведена на Рис. 28.

 

 

В этом случае, сфера L оснащена большой горловиной n, которая позволяет маленькой лампе b перемещаться внутри большой. В противном случае конструкция должна быть такой, как, например, на Рис. 18. Маленькая лампа удобно расположена на стержне S, на котором также расположен тугоплавкий электрод m. Он отделен от алюминиевой трубки а несколькими слоями слюды М для того, чтобы предотвратить повреждение шейки во время быстрого нагревания алюминиевой трубки при включении тока. Если желаем получить свет только в результате накаливания электрода, то внутренняя лампа должна быть такой маленькой, насколько это возможно. Если желаем получить свечение, то лампа должна быть больше, иначе она будет тоже нагреваться, и тогда свечение прекратится. Обычно, в таком устройстве светится только маленькая лампа, так как бомбардировка внешней сферы практически отсутствует. В некоторых из этих ламп, конструкция которых приведена на Рис. 28, маленькие трубки были покрыты слоем светящейся краски, что производило прекрасные эффекты.

Вместо того, чтобы для избежания перегрева, делать внутреннюю лампу большой, можно сделать больше электрод m. В этом случае бомбардировка ослабнет по причине уменьшения электрической плотности.

Множество ламп было изготовлено так, как показано на рис. 29. Здесь маленькая лампа b, внутри которой помещен огнеупорный электрод m, содержит очень сильный вакуум. Она помещена внутрь сферы L с умеренно разреженным газом, и запаяна наглухо. Основное достоинство этой конструкции в том, что она позволяет добиться очень сильного вакуума, и в то же время использовать большую лампу. В результате серии экспериментов с лампами, изображенными на Рис. 29, было установлено, что мы поступили правильно, сделав стержень s в области перемычки e очень толстым, а внутренний провод w тонким, так как иногда случается, что стержень в области перемычки нагревается и лампа лопается. Часто внешнюю сферу L откачивают лишь до такого состояния, чтобы мог проходить разряд, и пространство между лампами кажется темно-красным, что производит весьма любопытный эффект. В некоторых случаях, когда разрежение в большой сфере L очень низкое, а воздух хорошо проводит электричество, для того чтобы довести электрод m до состояния накала, необходимо нанести, желательно на верхнюю часть шейки сферы, покрытие из фольги, которое подсоединяется к изолированному телу, к другой клемме катушки или заземляется, поскольку хорошо проводящий ток воздух отчасти ослабляет эффект, вероятно, вследствие индуктивного воздействия со стороны провода w в месте, где он входит в лампу — в области перемычки е. Другая проблема, которая, однако, всегда присутствует, когда огнеупорный электрод располагается в очень маленькой лампе, и в устройстве изображенном на Рис. 29 — вакуум в лампе b ухудшается за сравнительно короткое время.

 

 

Главная идея двух последних описанных конструкций состоит в ограничении области нагрева рамками центральной части сферы, за счет не допущения циркуляции воздуха вокруг нее. Это достоинство конструкции обеспечивается, но благодаря нагреву внутренней лампы и медленному испарению стекла, трудно поддерживать вакуум, даже в конструкции, изображенной на рис. 28, в которой обе лампы сообщаются.

Но есть значительно более лучший способ — почти идеальный способ — это использование тока значительно более высокой частоты. Чем выше частота, тем медленнее обмен воздуха, и я думаю, что вполне можно получить частоту, при которой не было бы никакого обмена молекулами воздуха вокруг клеммы. Затем мы произвели бы пламя, которое происходит не в результате сжигания вещества. Это было бы необычное пламя, потому, что оно жесткое. При таких высоких частотах в игру вступает инерция частиц. Так как кистевой разряд, или пламя приобретает неподвижность благодаря инерции частиц, то их обмен следует предотвращать. Это неизбежно произойдет при увеличении числа импульсов, в результате чего потенциальная энергия частиц снизится до такой степени, что останутся только атомные колебания, а движение и передачи энергии в рамках измеримого пространства прекратится. Таким образом, обычная газовая горелка, подсоединенная к источнику быстро изменяющегося напряжения, до определенного предела увеличивает свою эффективность. Это происходит по двум причинам, из-за дополнительно полученных колебаний и из-за замедления процесса распространения частиц.

Восполнение энергии несет в себе определенные трудности, но оно необходимо для поддержания "горения". Продолжая увеличивать частоту импульсов, с учетом того, что они могут передаваться и воздействовать на пламя, в результате получим "гашение" последнего, подразумевая под этим термином только прекращение химического процесса.

Тем не менее я полагаю, что в случае использования электрода, погруженного в жидкую изолирующую среду и окруженного независимыми носителями электрических зарядов, которые могут обладать индуктивным воздействием, в результате существенного увеличения частоты импульсов, вероятно, произойдет притяжение всего окружающего газа к электроду. Для подтверждения этого достаточно всего лишь принять на как истинное то, что независимые тела имеют различную форму. Таким образом они могут поворачиваться к электроду стороной, которая имеет наибольшую электрическую плотность. При нахождении тел в этом положении ближе к электроду, жидкостное сопротивление должно быть ниже, нежели тогда, когда они находятся на большем удалении от него.

Существует общераспространенное мнение, и я к нему присоединяюсь, что не может быть и речи о том, чтобы выработать ток такой частоты — если рассматривать некоторые из вышеизложенных положений как истинные — при которой можно получить результаты, обозначенные мною как возможные. Но я пришел к убеждению, что достижение этих результатов возможно при более низких частотах, нежели те, которые рассчитывались сначала. При установлении пламени, возникают легкие колебания, вызванные столкновениями атомов, или молекул. Но каково соотношение между частотой столкновений и вызванными колебаниями? Несомненно, что оно должно быть несравнимо меньше, чем частота ударов колокола и звуковых колебаний, либо частота разрядов и колебаний конденсатора. Мы можем побудить молекулы газа к столкновению, используя электрические импульсы переменного тока высокой частоты, и тем самым мы можем имитировать процесс, происходящий в пламени. Из экспериментов с частотами, которые мы можем получить, я сделал вывод, что мы можем получить данный результат при помощи импульсов, передаваемых через проводник.

В связи с этим, мне кажется, будет очень интересно продемонстрировать жесткость колебаний газовой колонки. Несмотря на то, что с использованием тока столь низкой частоты, как скажем 10 000 колебаний в секунду, который я легко мог получить от специально сконструированного генератора, выполнение этой задачи на первый взгляд кажется обескураживающим, я все же провел серию экспериментов. Пробные эксперименты с воздухом при обычном давлении не привели ни к какому результату, но результаты экспериментов с умеренно разреженным воздухом, я рассматриваю как безошибочное экспериментальное подтверждение искомого свойства. Поскольку результат такого рода может привести исследователей к важным умозаключениям, я опишу один из проведенных экспериментов.

Хорошо известно, что через трубку, содержащую слабо разреженный газ, разряд может проходить в виде тонкой светящейся нити. Когда разряд возникает от тока низкой частоты, получаемого от катушки, работающей в обычном режиме, эта нить инертна. Если к ней приблизить магнит, ближайшая к нему часть притянется или оттолкнется, в зависимости от направления силовых линий магнита. Я предположил, что если такую нить получить от тока очень высокой частоты, то она должна быть более или менее прочной, и поскольку нить будет видимой, то ее легче будет изучать. В связи с этим, я подготовил трубку около 1 дюйма в диаметре, и 1 метра в длину, с внешним покрытием на каждом конце. Воздух в трубке был разрежен до такой степени, при которой даже при слабом действии возникает нить разряда. Я должен заметить, что общие аспекты трубки и степень разрежения совершенно отличны от тех, которые применяются при обычном низкочастотном токе. Поскольку предпочтительнее работать с одной клеммой, то трубка была подвешена к одному из концов провода, подсоединенного к клемме, покрытие из фольги подсоединено к проводу, а к нижнему слою покрытия подсоединена маленькая изолирующая пластинка. Когда нить образовывалась, она тянулась от верхнего конца трубки, до нижнего. Если она обладала упругостью, то эта упругость напоминала если не прочность эластичного шнура, натянутого между двумя опорами, то уж во всяком случае упругость шнура, подвешенного вертикально вниз при помощи небольшого груза на конце.

Когда к верхнему концу светящейся нити подносили палец или магнит, она могла менять свое положение в этом месте вследствие электростатического или магнитного воздействия. А когда объект возмущения очень быстро удалялся, получался результат аналогичный тому, когда вертикально подвешенный шнур быстро смещают в сторону и затем отпускают в точке, находящейся вблизи вертикали. При этом, когда в светящейся нити устанавливались колебания, образовывались два четко выделяющихся утолщения и нечеткое третье. Единожды установленные, колебания продолжались почти восемь минут, постепенно угасая. Скорость колебаний нередко меняется в ощутимых пределах, и было видно, что электростатическое притяжение стекла влияет на вибрирующую нить. Очевидно, что электростатическое действие не являлось причиной возникновения колебаний обычно неподвижной нити, которую всегда можно заставить вибрировать, если над верхней частью трубки быстро провести пальцем. Под действием магнита нить может разделяться на две вибрирующие части. Если поднести руку к нижнему покрытию трубки или к изолирующей пластине, то колебания ускоряются. Ускорение колебаний также происходит при увеличении напряжения, или частоты. Таким образом, либо увеличение частоты, либо прохождение более сильного разряда той же частоты, вызывают действие, соответствующее усилению натяжения шнура. Я не получил никаких экспериментальных доказательств истинности данной теории при использовании разрядов конденсатора. Светящаяся полоса, возникающая в лампе под действием повторяющихся разрядов лейденской банки, должна обладать прочностью, и если ее деформировать и резко отпустить, то она должна колебаться. Однако, количество вибрирующего вещества, возможно, настолько мало, несмотря на сверхвысокую скорость, инерция не может заметно проявить себя. Кроме того, вести наблюдение в таких случаях оказывается чрезвычайно трудным делом из-за присутствия основных колебаний.

Демонстрация того факта, который все еще нуждается в лучшем экспериментальном подтверждении, что колеблющееся газовое пламя обладает жесткостью, может очень сильно повлиять на научные взгляды ученых-теоретиков. Если учесть, что такие свойства могут быть замечены при низких частотах и незначительной разности потенциалов, то как же тогда должна вести себя газовая среда под воздействием сверхвысокого электростатического напряжения, которое может действовать в межзвездном пространстве, и которое может меняться с огромной скоростью? Существование такой электростатической, ритмически вибрирующей силы, — или вибрирующего электростатического поля, — может указать на возможный способ образования твердых тел из ульра-газообразной праматерии, и как поперечные и любые другие виды колебаний могут передаваться через газообразную среду, заполняющее все пространство. Далее, эфир и в самом деле может быть, лишенным твердости и состоянии покоя, он просто необходим как связующее звено, облегчающее взаимодействие. Что определяет твердость тела? Это должны быть скорость и масса движущейся материи. В газовой среде скорость может быть значительной, но плотность достаточно мала. В жидкости скорость также мала, хотя плотность может быть существенной. Но в обоих случаях инерционное сопротивление практически равно нулю. Но поместите газовую или жидкостную струю в интенсивное, быстро меняющееся электростатическое поле, придайте частицам колебания сверхвысокой скорости, и тогда инерционное сопротивление даст о себе знать. Тело сможет двигаться с большей или меньшей свободой через вибрирующую массу, но в целом оно будет твердым.

Есть предмет, который я должен упомянуть в связи с этим экспериментом. Это сильный вакуум. Это предмет, изучение которого не только интересно, но и полезно, так как это может привести к результатам большой практической важности. Заполнение промышленных электрических устройств, таких как лампы накаливания, работающие от обычных распределительных систем, более сильным вакуумом, не даст никаких преимуществ. В этом случае работа выполняется на нити накаливания и состояние газа не имеет большого значения, поэтому улучшение будет, но незначительное. Но когда мы начинаем использовать очень высокие частоты и потенциалы, роль газа становится очень важной, и степень разрежения существенно влияет на результат. До тех пор, пока использовались обычные, пусть даже очень большие, катушки, возможности изучения данного предмета были ограничены. Они не простирались далее точки, с которой начиналось самое интересное, останавливаясь по достижении "не-пробиваемого" вакуума. Но сегодня мы можем получить от маленькой катушки пробойнго разряда катушки такую высокую разность потенциалов, которую не смогла бы дать даже самая большая обычная катушка, и что более важно, мы можем сделать так, чтобы разность потенциалов изменялась с большой скоростью. Теперь оба этих фактора позволяют нам передавать светящийся разряд через любой доступный вакуум, и область наших исследований существенно расширяется. В настоящее время из всех возможных направлений разработок практических осветительных приборов, работа в направлении сильного вакуума представляется наиболее многообещающей. Но для получения очень сильного вакуума устройства необходимо сильно усовершенствовать. Но мы не сможем это сделать до тех пор, пока мы не откажемся от механической и не улучшим электрическую вакуумную помпу. Молекулы и атомы могут выбрасываться лампой под действием сверхвысокой разности потенциалов. Это будет лежать в основе принципа работы вакуумной помпы в будущем. Сегодня мы можем получить наилучшие результаты использую механические приспособления. В этом отношении я не могу не сказать несколько слов о методе и приборе для получения высокой степени разрежения, который в ходе моих исследований зарекомендовал себя весьма неплохо. Вполне возможно, что и другие экспериментаторы использовали схожие устройства. Поскольку вполне возможно, что в их описаниях найдется немало интересного для других ученых, позволю себе несколько замечаний в отношении данного предмета, дабы представить исследование в более законченном виде.

 

 

На Рис. 30 изображен прибор, где S — это помпа Спреигеля, которая была специально сконструирована для этой работы. Запорный кран, который обычно применяется, был удален, и вместо него в горловину резервуара R вмонтирована пустотелая пробка S. В пробке сделано маленькое отверстие b, через которое опускается ртуть. Размер входного отверстия о определяется в соответствии с сечением трубки t, которая припаяна к резервуару, вместо того, чтобы быть подсоединенной к нему обычным способом. В конструкции этого прибора устранены некоторые недостатки, позволяющие избежать сложностей, которые часто возникали при использовании запорного крана на резервуаре и соединения последнего с низводящей трубкой.

Помпа через U-образную трубку t подсоединена к очень большому резервуару Rj. При сборке особое внимание следует уделить шлифовке поверхностей пробок р и р j. Обе пробки и ртутные чашки над ними сделаны очень д л и н н ы м и. После того, как U-образную трубку смонтируют и установят на своем месте, ее нагревают, для того, чтобы смягчить и снять напряжение, которое может возникнуть в результате недостатков монтажа. U-образная трубку оснащена запорным краном и двумя отводами: g и gj. Один из отводов, подключаемый к маленькой лампе b, обычно заполняется каустической содой, а другой, подключаемый к приемному резервуару, содержит разреженный воздух.

Резервуар Rj посредством резиновой трубки подключается к немного большему по размеру резервуару R2. Каждый из двух резервуаров снабжен запорными кранами С/ и С2, соответственно. Резервуар R2 можно поднимать и опускать при помощи колеса и штатива. Диапазон его движений определен так, что если он заполнен ртутью и запорный кран С2 закрыт, то когда он поднят, в нем образуется Торричеллева пустота. Он может быть поднят так высоко, что ртуть в резервуаре Rj останавливается немного выше запорного крана Сj, и когда этот запорный кран закрыт, а резервуар R2 опущен так, что в резервуаре R1 образуется Торричеллиева пустота, то ртуть может быть опускаться настолько, что полностью заполняет полость последнего. Ртуть заполняет резервуар R2 до уровня расположенного немного выше запорного крана С 2.

Емкость помпы и соединений были сделаны настолько маленькими, насколько это было возможно относительно объема резервуара Rj, так как степень разрежения зависит от соотношения этих параметров.

Я объединил обычные средства, указанные в предыдущих экспериментах для получения очень сильного вакуума, с этим аппаратом. В большинстве экспериментов было удобно использовать едкое кали. Я осмелюсь высказать некоторые замечания в отношении его использования. Экономится много времени, и работа помпы улучшается, если в момент установки помпы, или непосредственно перед этим, расплавить и довести едкий кали до кипения. Если этот процесс не проделать, то клеи, которые обычно используются, очень медленно могут испускать небольшая влажность, при наличии которой помпа может работать в течение многих часов не создавая сильный вакуум. Едкое кали нагревается либо спиртовой горелкой, либо пропусканием через него разряда, либо пропуская ток по проходящему через него проводу. Преимущество последнего варианта в том, что нагревание можно повторять значительно быстрее.

Обычно процесс разрежения протекает следующим образом. В начале работы запорные краны С1 и С2 открыты, а все другие соединения закрыты. Резервуар R2 поднимается до тех пор, пока ртуть не заполнит резервуар R1, и часть U-образной трубки. Когда помпа начинает работать, ртуть должна быстро подниматься в трубке, и резервуар R2 опускается, а экспериментатор поддерживает уровень ртути на том же уровне. Резервуар R2 уравновешивается длинной пружиной, которая облегчает действие, а силы трения частей обычно в целом достаточно для того, чтобы удерживать его практически в любом положении. Когда помпа Спренгеля заканчивает свою работу, резервуар R2 опускается еще ниже, ртуть опускается в резервуар R j и заполняет резервуар R2 над которым закрывается запорный кран С2. Воздух, налипший на стенки резервуара R1 и абсорбированный ртутью, удаляется, и ртуть освобождается от всего воздуха в резервуаре R2, который он набрал за время долгой работы, перемещаясь вверх и вниз. Во время этого процесса некоторое количество воздуха, которое должно было собираться ниже запорного крана С2, удаляется из резервуара R2 в результате опускания его вниз и открывания крана, который позже перед подъемом резервуара закрывается. Когда весь воздух из ртути удален и он больше не собирается в резервуаре R2 при его опускании, прибегают к действию каустического поташа. Теперь резервуар R2 вновь поднимается до тех пор, пока ртуть в резервуаре Rj не поднимется выше запорного крана С]. Каустический поташ расплавлен и находится в состоянии кипения. При этом влага частично удаляется помпой, а частично реабсорбируется. Этот процесс нагревания и охлаждения повторяется много раз, и каждый для абсорбирования и удаления влаги требуется все больше подъемов и опусканий резервуара R2. Таким образом, вся влага удаляется из ртути и оба резервуара приводят в состояние, пригодное для использования. Затем, резервуар R2 вновь поднимают в самое верхнее положение, а помпу оставляют в рабом режиме на длительный период времени. После получения максимально возможного вакуума при помощи помпы, лампу с поташем обычно заворачивают в хлопок, смоченный эфиром для того, чтобы сохранить низкую температуру поташа. Затем резервуар R2 опускают, а на опустошенный резервуар R j надевают приемный резервуар r, и быстро запаивают.

Когда приносят новую лампу, ртуть всегда должна быть выше запорного крана С], который закрыт для того, чтобы всегда сохранять ртуть и оба резервуара в наилучшем состоянии и ртуть никогда не выливается из резервуара Rj, за исключением случаев, когда помпа достигает наивысшей степени разрежения. Это правило необходимо соблюдать, если Вы желаете успешно пользоваться этим аппаратом.

Используя эти приспособления, я мог совершать процесс очень быстро, и когда прибор был в идеальном состоянии, то было возможно достичь стадии фосфоресценции в маленькой лампе менее чем за 15 минут. Это время определенно является очень быстрым для маленькой лабораторной установки, требующей всего около 100 фунтов ртути.

В обычной маленькой лампе соотношение емкости помпы, приемного резервуара и соединений к резервуару R составляет где-то 1 к 20. Степень достигаемого разрежения получается очень высокой, хотя я и не могу дать точное определение насколько оно велико.

Что больше всего производит впечатление на исследователя при проведении этих опытов, так это поведение газов, которые подвергаются воздействию очень быстро изменяющемуся электростатическому напряжению. Но исследователя не должно покидать сомнение: в наблюдаемых эффектах принимают участие только молекулы и атомы газа, которые нам хорошо известны по результатам химического анализа, или же в них принимает участие еще и другая газообразная среда, включающая в себя атомы и молекулы жидкости, заполняющей пространство. Такая среда, несомненно, должна существовать, и я убежден что, например, даже при отсутствии воздуха и непосредственно прилегающее к нему пространство, должны нагреваться из-за быстро меняющейся разности потенциалов тела. Но такое нагревание не может происходить, если все свободные атомы удалены и остались только атомы однородных, несжимающихся и упругих жидкостей, например, таких как эфир, которые не допускают никаких взаимодействий и столкновений. В этом случае, могут происходить только фрикционные потери и только в той степени, в которой это позволяет само тело.

Поразительно то, что с увеличением частоты импульсов, разряд проходит через газ все легче и легче. В этом плане его поведение прямо противоположно тому, что происходит в металлическом проводнике. В последнем случае полное сопротивление — импеданс — наступает при увеличении частоты. Но газ должен проявлять себя как несколько последовательно включенных конденсаторов: легкость, с которой проходит разряд, возможно, зависит от скорости изменения разности потенциалов. Если это так, тогда в вакуумной трубке даже очень большой длины и вне зависимости от силы тока, не могла бы возникнуть сколь-нибудь существенная самоиндукция. Таким образом, мы с Вами сейчас можем воочию убедиться, что через проводник в газовой среде могут проходить импульсы такой частоты, какую мы только; сможем получить. Если бы мы смогли увеличить частоту до необходимой величины, то смогли бы создать систему распределения электрической энергии, которой заинтересовались бы и газовые компании: металлические трубы, заполненные газом — где металл выступает как изолятор, а газ — как проводник, снабжающий энергией фосфоресцентные лампы и, возможно, устройства, которые еще не изобретены. Нет сомнений в том, что вполне возможно, взять полый медный стержень, создать в нем разрежение газа, и при помощи импульсов достаточно высокой частоты, проходящих по цепям вокруг него, довести газ внутри стержня до высокой степени накаливания. Но поскольку мы еще мало знаем о природе этих сил, то возникают сомнения: а будет ли с такими импульсами медный стержень вести себя как статичный экран? С такими парадоксами и причинами, обуславливающими явную невозможность осуществления тех, или иных проектов, мы сталкиваемся на каждом шагу этого направления работы, а в этом в основном и заключается обаяние исследовательской работы.

А сейчас, я беру короткую и широкую трубку, внутри которой имеется газ с высокой! степенью разреженности, и которая имеет прочное бронзовое покрытие, едва позволяющее свету проходить через него. Металлическая застежка, с крюком для подвешивания трубки, закреплена вокруг средней части последней. Зажим находится в контакте с бронзовым покрытием. Теперь я хочу, чтобы газ внутри трубки стал излучать свет, когда я подвешу трубку на провод, подсоединенный к катушке. Любому, кто захочет провести этот эксперимент в первый раз, не имея никакого предварительного опыта, следует позаботиться о том, чтобы в этот момент никого из посторонних в комнате не было. В противном случае, он может стать объектом насмешек со стороны своих помощников. Однако, несмотря на наличие металлического покрытия, лампа засветилась, и свет отчетливо проступает сквозь нее. Длинная трубка, покрытая алюминиевой бронзой, излучает яркий свет, когда я удерживаю ее в одной руке, а другой рукой касаюсь клеммы катушки. Можно было бы возразить, что покрытия обладают недостаточной степенью электропроводности, а поскольку они обладают высоким сопротивлением, то должны экранировать газ. Они, несомненно, служат хорошим экраном в состоянии покоя, но когда на покрытие воздействует разряд, то экранирующая способность существенно ослабевает. Однако внутри трубки, несмотря на наличие экрана, именно из-за наличия газа, происходит большая потеря.








Дата добавления: 2016-03-04; просмотров: 667;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.