Нью Йорк, 26-е Мая 1888. 11 страница

Если бы мы взяли большую полую металлическую сферу и заполнили ее самым совершенным, несжимаемым жидким диэлектриком, даже несмотря на быстрое изменение потенциалов, внутри сферы у нас не было бы потерь энергии, и, следовательно, сферу можно было бы рассматривать как полностью экранированную. Если бы мы заполнили сферу маслом, то потери энергии были бы значительно меньше, нежели тогда, когда вместо жидкости используется газ, поскольку в последнем случае, возникает сила, вызывающая перемещения, то есть взаимодействия и столкновения частиц внутри сферы.

Давление газа внутри сферы не имеет большого значения. Этот фактор приобретает значение при нагревании проводника, когда электрическая плотность становится огромной, а частота очень высокой. Таким образом, при нагревании проводников при помощи светящихся разрядов, воздух становится элементом исключительной важности. Этот факт можно рассматривать как совершенно точный, почти так, как если бы он был подтвержден экспериментально. Я могу проиллюстрировать действие воздуха в следующем эксперименте: я беру короткую трубку, заполненную вакуумом средней степени, и платиновую проволоку, протянутую через середину трубки от одного конца к другому. Затем пропускаю через проволоку постоянный или низкочастотный ток, и она равномерно нагревается по всей длине. Нагревание здесь произошло вследствие проводимости или фрикционных потерь, и газ вокруг проволоки, как мы можем убедиться воочию, не играет никакой роли. А теперь я пропускаю через проволоку резкие разряды, или ток высокой частоты. Проволока опять нагревается, но сильнее на концах и меньше в средней части, а если частота импульсов, или скорость изменения потенциалов достаточно высоки, то проволока может оборваться в середине, а может и не оборваться, поскольку практически все нагревание происходит благодаря разреженному газу. Здесь газ может выступать только как проводник с нулевым сопротивлением, по которому течет ток от провода, так как сопротивление последнего взросло до огромного значения, вследствие нагрева концов провода, произошедшего из-за сопротивления проходящему по ним разряду. Но совершенно нет необходимости в том, чтобы газ в трубке был электропроводным. Он может быть очень низкого давления, и тогда концы проволоки будут нагреваться. При этом, как было установлено экспериментально, эти концы могут и не иметь электрического контакта через газовую среду. Что теперь происходит с частотами и разностью потенциалов в разреженной трубке, подверженной воздействию светящихся разрядов при обычном давлении? Мы должны помнить один из фактов, полученных в результате данных исследований, а именно: по отношению к импульсам очень высокой частоты газ, находящийся под обычным давлением, ведет себя почти так же, как и газ, находящийся под умеренно низким давлением. Я думаю, что при частых разрядах, проволока или электропроводные объекты часто улетучиваются только потому, что вокруг них присутствует воздух. А вот если бы проводник был погружен в изолирующую жидкость, то остался бы цел, поскольку в этом случае энергии пришлось бы найти себе иной выход. Из поведения газа при скачкообразных импульсах высокого напряжения я сделал вывод, что не может быть никакого другого верного способа направить светящийся разряд, кроме как позволить ему пройти через некий объем газа, если подобное можно осуществить на практике.

Есть еще две особенности, связанные с этим экспериментом, на которых, я думаю, необходимо остановиться подробнее — это "лучистое состояние" и "не зажигающий вакуум".

Любой, кто изучал работы Крукса, должен прийти к выводу, что "лучистое состояние" является свойством газа, находящего в состоянии сверхвысокого разрежения. Но следует помнить, что явления, наблюдаемые в сосуде с разреженным газом, ограничены свойствами и возможностями используемого аппарата. Я думаю, что в лампе движение молекулы или атома происходит по прямой линии не потому, что он не встречает на своем пути преград, а потому, что скорость, приданная ему, достаточно высока для того, чтобы его движение происходило по прямой линии. Свободный для движения путь — это одно, а скорость, то есть энергия, связанная с движущимся телом, — это другое, и я думаю, что при обычных условиях она относится к разности потенциалов, или к скорости. При большой разности потенциалов и при сравнительно низкой степени разрежения газа, катушка пробойного разряда вызывает свечение и проецирует тени. В светящемся разряде, при обычном давлении, частицы движутся по прямым линиям тогда, когда усредненный свободный путь по протяженности очень мал, и часто изображение проволоки, или других металлических предметов, производятся частицами, направленными по прямым линиям.

 

 

Я подготовил лампу, чтобы экспериментально показать правильность этих утверждений. В шаре L (рис. 31) я поместил над нитью накаливания f кусочек извести l. Нить накаливания соединена с проволокой, которая идет внутрь лампы, конструкция которой приведена на Рис. 19 и описана выше. Лампа подвешена на проволоке, подсоединенной к клемме катушки. Когда катушка приводится в действие, то выступающую часть нити накаливания с кусочком извести подвергают бомбардировке. Степень разрежения в лампе такова, что напряжение катушки может вызвать свечение стекла, но при ослаблении вакуума оно исчезает. Известь содержит влагу, а при нагревании влага выделяется, поэтому свечение продолжается всего лишь несколько мгновений. Когда известь достаточно сильно нагревается, значительное количество выделившейся влаги существенно ухудшает качество вакуума в лампе. При бомбардировке одна часть куска извести нагревается больше, чем остальные, в конце концов, практически все разряды проходят через эту, интенсивно нагреваемую часть, и белый поток частиц извести (Рис. 31) вырывается вперед из этой точки. Этот поток состоит из "лучистого" вещества, хотя степень разрежения низкая. Но частицы движутся по прямым линиям, так как скорость, приданная частицам велика. Высокая скорость частиц обусловлена тремя причинами: высокой электрической плотностью, высокой температурой в малой области воздействия и тем фактом, что частицы извести легко отделяются и испускаются, гораздо легче, чем частицы углерода. При работе с частотами, которые мы способны получить, частицы целиком испускаются и выбрасываются на значительное расстояние, но при более высоких частотах этого не происходит. В этом случае только напряжение или колебания могут распространяться через лампу. Если бы атомы двигались со скоростью света, то мы никогда бы не смогли получить такую частоту. Я полагаю, что это невозможно, так как для этого требуется огромная разность потенциалов. С той разностью потенциалов, которую мы способны получить даже при помощи катушки пробойного разряда, скорость атомов должна быть совершенно незначительной.

Что касается "не зажигающего вакуума", то было замечено, что он может возникать только при низкочастотных импульсах. Это обусловлено невозможностью испускания достаточного количества энергии такими импульсами при сильном вакууме, так как некоторые атомы, находящиеся вокруг клеммы взаимодействуют с теми, которые отталкиваются и удерживаются на расстоянии сравнительно долгий период времени. При этом выполняется недостаточно работы для того, чтобы вызвать эффект, воспринимаемый глазом. Если разность потенциалов между клеммами увеличивается, то диэлектрик разрушается. Но при импульсах очень высокой частоты разрушения диэлектрика может и не быть, так как некоторое количество выполняется непрерывным возбуждением атомов в разреженном сосуде, при условии, что частота достаточно велика. Даже при частоте, получаемой от генератора переменного тока, использованного в данном эксперименте, можно легко достичь состояния, при котором разряд не проходит между двумя электродами в узкой трубке, где каждый из электродов подсоединен к одной из клемм катушки. Однако достичь состояния, при котором вокруг электродов светящийся разряд не мог бы возникать, совсем не просто.

 

 

При этом в отношении тока высокой частоты возникает совершенно естественная мысль: а почему бы не использовать его как мощное средство электродинамического воздействия для производства световых эффектов в запаянном стеклянном сосуде. Наличие внутреннего провода является одним из недостатков существующих ламп накаливания. И если никаких других усовершенствований не будет привнесено в конструкцию ламп, то уж по крайней мере этот недостаток можно устранить. Следуя этой мысли, я продолжил эксперименты в различных направлениях, некоторые из которых изложил в моей предыдущей работе. А сейчас я бы хотел остановиться на двух других направлениях проводимых экспериментов.

На Рис. 32 представлены конструкции ламп, изготовленных в большом количестве. На Рис. 32 широкая трубка Т припаяна к маленькой W-образной трубке U из фосфоресцирующего стекла. В трубку Т помещена катушка С из алюминиевой проволоки, на концах которой имеются небольшие алюминиевые сферы t и tj, входящие внутрь трубки U. Трубка Т вставлена в гнездо, содержащее первичную катушку, через которую обычно проходит разряд из лейденских банок. Под воздействием тока высокого напряжения, вызванного в катушке С, разреженный газ в маленькой трубке U излучает мощный свет. Когда для индуцирования тока в катушке С используется разряд лейденской банки, то необходимо плотно набить трубку Т изолирующим порошком, так как часто возникает разряд между витками катушки, особенно тогда, когда первичная катушка толстая, а воздушный зазор, через который происходит разряд банок — большой. Если принять эти меры, то никаких подобных осложнений в дальнейшем не возникнет.

На Рис. 33 представлена другая конструкция лампы. В этом случае трубка Т припаяна к шару L. Трубка содержит катушку С, концы которой проходят через две маленьких стеклянные трубки t и tj, которые припаяны к трубке Т. Два тугоплавких электрода m и m 1 размещены на нитях накаливания лампы, которые подсоединены к концам проводов, проходящих через стеклянные трубки t и t j.

Обычно в лампе, сделанной по этой, схеме шар L сообщается с трубкой Т. Для этого концы маленьких трубок t u t1 слегка нагреваются в пламени горелки, а затем просто прикладываются к проволоке, но так, чтобы не повредить соединение. Сначала подготавливается трубка Т с маленькими трубками, проводами внутри них и тугоплавкими электродами m и m 1, а затем припаивается к шару L, над которым устанавливается и подключается катушка С. Затем трубка Т заполняется изолирующим порошком, который утрамбовывается как можно плотнее, и закрывается. В трубке оставляется только маленькое отверстие, через которое досыпаются остатки порошка, и в конце концов трубка запаивается совсем. Обычно в конструкциях ламп, изображенных на Рис. 33, алюминиевая трубка а крепится на верхней части S каждой из трубок t и t j. Это нужно для того, чтобы не допустить нагревания верхней части трубки. Электроды m и m1 можно доводить до любой степени накала, при помощи разрядов лейденской банки, проходящих через катушку С. В таких лампах с двумя электродами возникает очень красивый эффект, связанный с образованием теней от каждого из электродов.

Целью другого направления экспериментов, являлось индуцирование тока, или светящегося разряда в вакуумной трубке при помощи электродинамической индукции. Этот предмет настолько широко исследован и описан в трудах профессора Дж. Дж. Томсона, что я если мог бы что-либо добавить, то очень немногое, даже если бы это было отдельной темой данной лекции. Но поскольку эксперименты в этом направлении дали определенные результаты и сформировали у меня определенные взгляды, мне представляется необходимым сказать об этом несколько слов.

Не вызывает сомнения факт, и результаты многочисленных опытов это подтверждают, что по мере увеличения длины трубки (т. е в каждой последующей единице ее длины), постепенно уменьшается электродвижущая сила, необходимая для прохождения разряда. Поэтому, в разреженной трубке достаточной длины, можно получить светящийся разряд даже при низкой частоте, если замкнуть трубку на себя. Такую трубку можно разместить вокруг комнаты или на потолке, в результате получится простое устройство, способное дать значительное освещение. Но это устройство было бы сложным в производстве и совершенно нерегулируемым. Сделать трубку маленькой длины — тоже не самый лучший выход, поскольку при обычных частотах возникали бы большие потери энергии на покрытиях. Помимо этого, при использовании покрытий, лучше подавать ток непосредственно на трубку, подключая покрытия к трансформатору. Но, даже если устранить все подобное недостатки, то, как я уже отмечал ранее, на низких частотах преобразование света как таковое все же будет неэффективным. При использовании сверхвысоких частот длина вторичной обмотки или, другими словами, размер сосуда, может быть уменьшен до желаемой величины, а эффективность преобразования света возрастет, разумеется, при условии, что будут созданы средства для получения таких высоких частот. Таким образом, принимая во внимание как теоретически, так и практические данные, мы сможем использовать ток высокой частоты, а это означает, что мы получим мощную электродвижущую силу при слабом токе в первичной обмотке. Когда Томсон работал с зарядом конденсатора, а это единственное на сегодняшний день известное средство для получения тока высокой частоты, то он смог получить электродвижущую силу, мощностью в несколько тысяч вольт на каждый виток первичной обмотки. Однако Он не смог усилить эффект электродинамической индуктивности увеличением числа витков первичной обмотки и сделал вывод, что лучше всего работать с одним витком, хотя он и должен был иногда отступать от этого правила — он должен был справляться с тем индуктивным эффектом, который мог получить от одного витка. Но еще до начала экспериментов с токами высокой частоты, необходимыми для получения в маленькой лампе электродвижущей силы в несколько тысяч вольт, он создал несколько очень важных электростатических эффектов. С увеличением частоты увеличивается значение этих эффектов по отношению к электродинамическим.

Сегодня, в этой области, главным предметом наших желаний является увеличение частоты, что неизбежно ухудшит электродинамические эффекты. С другой стороны, сегодня можно легко усиливать электростатическое действие путем увеличения витков на вторичной обмотке, или сочетанием самоиндукции и емкости с увеличением напряжения.

Также следует помнить, что при уменьшении тока до минимальной величины и увеличении напряжения, электрические импульсы высокой частоты могут легче проходить через проводник.

Эти и другие доводы побудили меня обратить больше внимания на электростатические явления, и я задался целью получить ток как можно более высокого напряжения с как можно более быстрыми колебаниями. Затем я обнаружил, что могу вызвать возбуждения в вакуумной трубке, находящейся на значительном расстоянии от проводника, подключенного к катушке определенной конструкции. Я также обнаружил, что могу, преобразовав колебательный ток конденсатора в высокое напряжение, установить переменные электростатические поля, действие которых распространяется по всему объему комнаты, заставляя трубку светиться вне зависимости от ее положения в пространстве. Я понял, что сделал шаг вперед и продолжил исследования в этом направлении, но хочу сказать, что я, как и все те, кто влюблен в науку и прогресс, желаем только одного — добиться такого результата своей работы, который мог бы найти себе применение во всех областях человеческой деятельности.

Я думая, что это верное направление работы, поскольку исходя из результатов наблюде- ний за явлениями, которые появляются при работе с токами высокой частоты, я не вижу, за ис- ключением электростатических сил, что же действует между двумя цепями, по которым проходят, к примеру, импульсы в несколько сотен миллионов колебаний в секунду. Даже с та- кими незначительными частотами практически вся энергия должна представлять собой напря- жение, и пришел к твердому убеждению, что вне зависимости от того к какому виду движения относится свет, он порождается огромным электростатическим напряжением, колеблющимся с необычайно высокой скоростью.

Среди всех этих явлений, наблюдаемых при использовании тока или электрических импульсов высокой частоты, наиболее увлекательными для аудитории являются те, в которые образуются в электростатическом поле, действующем на значительном расстоянии, и лучшее, что может сделать неопытный лектор — это начать и закончить демонстрацией этих необыкновенных эффектов. Я беру в руки трубку, двигаю ею, и она светится, куда бы я ее не поместил; во всем пространстве действуют невидимые силы. Но я могу сделать другую трубку, и она может не светиться, так как в ней находится очень сильный вакуум. Я возбуждаю ее при помощи катушки пробойного разряда, и теперь она светится в электростатическом поле. Я могу спрятать ее на несколько недель, или месяцев, и после этого она все еще сохранит способность к возбуждению. Какое изменение я вызвал в трубке, вызвав в ней возбуждение? Если атомам придается движение, то трудно понять, как оно может так долго сохраняться и не гаснуть из- за фрикционных потерь. Если в диэлектрике возникает натяжение, такое как при простом получении света, то легко увидеть, как он может неопределенно долго сохраняться, по очень трудно понять, почему это может вызывать возбуждение, когда мы имеем дело с быстро меняющимися потенциалами.

С тех пор, когда я впервые показал это явление, мне удалось получить еще несколько интересных эффекты. Например, мне удалось добиться высшей степени накала электрода, нити накаливания или проволоки, находящихся в трубке. Чтобы достичь этого результата, необходимо было минимизировать потери энергии, поступающей из поля, большая часть которой направляется на маленькое тело для приведения его в состояние накала. В начале эта задача показалась трудной, но весь мой предыдущий опыт работы помог мне легко достичь желаемого результата. На Рис. 34 и Рис. 35 изображены две такие трубки, изготовленные специально для данного случая. На Рис. 34 короткая трубка Tj, припаянная к более длинной трубке Т, снабжена ножкой S с запаянной в нее платиновой проволокой. К этой проволоке прикреплена очень тонкая нить накаливания f, а вывод наружу сделан из тонкой медной проволоки W. Трубка снаружи и изнутри имеет покрытия С и С j соответственно. Внутреннее пространство трубки до уровня каждого покрытия заполнено электропроводным порошком, а пространство над ними — неэлектропроводным. Эти покрытия используются только для того, чтобы можно было провести два эксперимента с трубкой, а именно: получить желаемый эффект при помощи либо прямого подключения тела экспериментатора или другого тела к проводу W, либо посредством индуктивного воздействия через стекло. Ножка S снабжена алюминиевой трубкой а, назначение которой было указано ранее, и только маленькая часть нити накаливания выходит из этой трубки. Если трубку Т] поместить куда угодно в электростатическое поле, то нить накаляется.

Более интересная часть устройства показана на Рис. 35. Конструкция та же, что и раньше, только вместо нити лампы используется маленькая платиновая проволочка 1 р, запаяная в ножку S и согнутая выше нее в кольцо, подсоединена к медному проводу W, который соединяется с внутренней обкладкой С. Маленькая ножка S j имеет иголку, на острие которой установлена очень легкая крыльчатка из слюды V, которая легко может вращаться. Чтобы крыльчатка не слетела, тонкая стеклянная ножка g изогнута соответствующим образом и прикреплена к алюминиевой трубке.

Когда стеклянную трубку держат в электростатическом поле, платиновая проволочка накаляется, и слюдяная крыльчатка очень быстро крутится.

 

 

В лампе можно возбудить очень интенсивную флуоресценцию, просто соединив ее с находящейся в поле пластиной, площадь которой не требуется намного большей чем у обычного абажура. Фосфоресценция, возбуждаемая этими токами, несравнимо интенсивнее, чем от обычного аппарата. Маленькая фосфоресцентная лампа, если ее подключить к соединенному с катушкой проводу, испускает достаточно света, чтобы можно было прочесть обычный шрифт на расстоянии в пять-шесть шагов. Было интересно посмотреть, как будут вести себя при этих токах некоторые из фосфоресцентных ламп Профессора Крукса, и он любезно одолжил мие несколько по этому поводу. Получаемые эффекты впечатляют, особенно с сульфидом кальция и сульфидом цинка. С катушкой пробойного разряда они сильно светились, если их просто держать в руке, соединив тело с контактом катушки.

К каким бы результатам ни привели такого рода исследования, в настоящее время основной их интерес лежит в направлении открываемых ими возможностей для создания эффективного осветительного прибора. Ни в какой другой области электрической индустрии так не нужен прогресс, как в получении света. Каждый мыслящий человек, если он вдумается в то, насколько варварские методы используются [сейчас], насколько плачевны потери в лучших наших системах производства света, должен спросить себя: Каким же должен быть свет в будущем? Будет ли он [получаться] от раскаленного твердого тела, как в нынешней лампе, или от раскаленного газа, или от фосфоресцентного тела, или от чего-нибудь наподобие горелки, но несравнимо более эффективной?

Шанс разработать газовую горелку крайне мал; и не потому, вероятно, что человеческий гений многие века корпел над этой проблемой без какого-либо радикального прогресса, — хотя этот аргумент также не лишен силы, — но потому, что в горелке более высокие вибрации никогда нельзя достичь, не пройдя через все более низкие. Потому что как получить пламя, кроме как через падение поднятых грузов? Подобный процесс не может идти без возобновления, а возобновление повторяется, проходя от низких вибраций к высоким. По- видимому, есть только один путь улучшить горелку, а именно, пытаясь достичь более высоких степеней накаливания. Более высокое накаливание эквивалентно более быстрой вибрации. Это означает больше света от того же [количества] вещества, а это в свою очередь означает более высокую экономию. В этом направлении уже сделаны некоторые усовершенствования, но дальнейшему развитию препятствуют множество ограничений. Таким образом, если не принимать в расчет пламя, то остаются три, ранее обозначенных пути, и все они ведут через электричество.

Представьте себе, что в ближайшем будущем свет будет получаться в результате накала твердого тела электричеством. Разве не лучше будет использовать маленький электрод, нежели непрочную нить накала? Несомненно, что исходя из множества соображений, использование электрода должно быть признано более экономичным, разумеется, при условии, что будут успешно преодолены сложности, связанные с работой таких ламп. Но для того, чтобы зажечь такую лампу, нам необходимо более высокое напряжение, а для экономичного использования таких ламп нам необходима более высокая частота тока.

Эти доводы даже в большей степени относятся к производству света при помощи накала газа, или фосфоресценции. Во всех случаях нам требуется более высокая частота и более высокое напряжение. Я пришел к этим умозаключениям давно.

Использование тока высокой частоты имеет множество преимуществ, например: высокая экономия энергии при производстве света, возможность работать с использованием только одного провода, возможность избавиться от необходимости использовать внутренний провод и т. д.

Но вопрос в том, как далеко мы можем идти по пути увеличения частоты? Обычные проводники при сильном повышении частоты теряют способность к передаче электрических импульсов. Предположим, что у нас есть самые совершенные средства производства импульсов. Тогда возникает вопрос: "А как мы будем передавать импульсы, когда возникнет необходимость?" При передаче таких импульсов через проводник, мы должны помнить, что нам придется иметь дело с давлением и с потоком, в обычном понимании этих терминов. Если увеличить давление до огромной величины, и соответственно снизить поток, тогда такие импульсы, несомненно, можно будет передавать по проводам, даже если их частота будет [исчисляться многими сотнями колебаний в секунду. Разумеется, совершенно невозможно будет передавать такие импульсы через провод, погруженный в газовую среду, даже если этот провод покрыт толстым слоем самой лучшей изоляции, поскольку большая часть энергии будет теряться вследствие молекулярных бомбардировок и последующего нагревания. Конец провода, подключенный к источнику энергии, будет нагреваться, а от источника до дальнего конца провода дойдет лишь малая толика энергии. Таким образом получается, что для того, чтобы использовать такие электрические импульсы, в первую очередь нужно найти способ снизить до минимального уровня рассеивание энергии.

Первое, что приходит на ум — это использовать самый тонкий, из возможных, провод, покрытый самым толстым, из возможных, слоем изоляции. Вторая мысль — это использовать электростатические экраны. Изоляция провода может нести на себе электропроводное покрытие, подключенное к земле. Но это не годится, поскольку тогда вся энергия будет уходить через электропроводное покрытие в землю, и до дальнего конца провода ничего не дойдет. Если уж устанавливать заземление, то тогда оно проходить через совершенно независимый провод, или через конденсатор очень малой емкости. Однако это не устраняет иные сложности.

Если длина импульсов будет намного меньше длины провода, тогда соответствующие короткие волны будут устанавливаться в электропроводном покрытии, а это почти то же самое, как если бы покрытие было подключено непосредственно к земле. Следовательно, необходимо нарезать покрытие на секции, длина которых намного меньше длины волны. При таком подключении хороший экран не установить, но плохой же в десять тысяч раз лучше, чем никакой. Я думаю, что было бы предпочтительней нарезать электропроводное покрытие на маленькие секции, даже если длина волны намного превосходит длину покрытия.

Если провод снабдить хорошим электростатическим экраном, это будет равносильно тому, как если бы от него на огромное расстояние удалили бы все предметы. Таким образом, можно снизить емкость до величины емкости собственно провода, которая очень мала. Тогда стало бы возможным передавать по проводу колебания тока очень высокой частоты на огромные расстояния без какого-либо существенного воздействия на сами колебания.

Разумеется, создать безупречный экран не представляется возможным, но я надеюсь, что экран, подобный тому, что я описал для телефонии, вполне можно применить в данном случае для экранирования трансатлантического кабеля. Если следовать моим предложениям, то провод с гуттаперчевым изолирующим покрытием следует оснастить третьим электропроводным покрытием, разделенным на секции. Поверх электропроводного покрытия следует нанести еще один слой гуттаперчевой и эфирной изоляции, а поверх нее уже защитный слой. Но такой кабель не будет создан, потому, что вскоре человеческие знания — передаваемые без проводов — будут отдаваться в земле, как сердечный пульс в живом организме. Любопытно то, что при нынешнем состоянии научных знаний и опыта, никто не попытался использовать электростатическое, или магнитное поле Земли для передачи знаний, или чего-нибудь еще.

Плавная цель, которую я преследовал при демонстрации этих опытов, состояла в том, чтобы показать Вам новые явления и особенности, а также предложить некоторые идеи, которые, как я надеюсь, будут служить отправными точками для новых исследований. Ваши аплодисменты, которыми вы меня так часто и щедро награждали, говорят о том, что мое выступление было успешным.

В заключение позвольте мне поблагодарить Вас за любезность и внимание, и уверить Вас в том, что я никогда не забуду, что мне выпала великая честь выступать перед столь уважаемой аудиторией, о том с каким удовольствием я представлял результаты своего труда перед выдающимися людьми, среди которых находятся те, в чьих работах много лет назад я нашел вдохновение и непреходящее удовольствие.

О СВЕТЕ И ДРУГИХ ВЫСОКОЧАСТОТНЫХ ЯВЛЕНИЯХ*








Дата добавления: 2016-03-04; просмотров: 368; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2019 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.