Динамические и статистические законы
Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате дейв ствия определенных причин, что все природные, социальные ипсихические явления связаны между собой причинноследственными связями, а беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.
В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей — существенных, повторяющихся связей между предметами и явлениями — задача науки, так же, как и формулирование их в виде законов науки, которые являются нашим знанием о природных закономерностях.
Физика знает два типа физических законов (теорий) — динамические и статистические законы.
Динамический закон — это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупностьдинамических законов.
Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Другими динамическими теориями являются электродинамика Максвелла, механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).
Долгое время считалось, что никаких других законов, кроме динамических, просто не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, не могли быть описаны абсолютно точно посредством определенного набора физических величин, делался вывод о недостатке наших познавательных способностей. Представление о том, что все объективные закономерности должны выражать однозначную связь физических объектов, оставалось незыблемым.
Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и чаконов, называется механическим детерминизмом. Формулирование этого требования в жесткой форме обычно связывают с именем Пьера Лапласа. Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному, как объективной категории, нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким, или лапласовским, детерминизмом.
Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны. Более того, оказалось, что при описании движения отдельных макроскопических тел, которое всегда считалось сферой действия динамических законов, осуществление идеального классического детерминизма практически невозможно.
В середине XIX в. в физике были сформулированы законы, предсказания которых не являются определенными, а только вероятными. Они получили название статистических законов.
Представление о законах и закономерностях особого типа, которых связи между величинами, входящими в теорию, неодпозначны, впервые ввел Максвелл в 1859 г. при построении статистической механики — первой фундаментальной теории нового типа. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц (в данном случае — молекулы газа в сосуде), нужно ставить задачу иначе, чем в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр.
При бросании игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном броске кости, нельзя. Мы можем подсчитать лишь вероятность выпадения любого числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что oтражается динамическими законами, но она имеет другую форму, так как показывает вероятность, а не однозначность события.
Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл подобных событий. В данном случае мы можем получить статистические средние значения. Так, если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х 1/6 = 50 paз. При этом совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.
Статистические законы, в отличие от динамических законов, отражают однозначную связь не физических величин, а статистическое распределение этих величин. Результат, изменение состояния, которое определяется на основе соответствующих уравнений, также выражается не значениями физических величин, а вероятностями этих значений внутри заданных интервалов. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические теории, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.
На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма. В отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. Эти законы меньше огрубляют действительность, имеют менее сильные гносеологические предпосылки, поэтому они способны учитывать и отражать те случайности, которые происходят в мире.
Сегодня любой известный в природе процесс более точно описывается статистическими законами. Но окончательно это стало ясно после создания квантовой механики — статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем. Тогда бьша выяснена принципиальная невозможность динамического описания этих процессов.
Дата добавления: 2016-02-27; просмотров: 4364;