История возникновения категорий симметрии

Познавательную силу симметрии оценили философы Древней Греции, используя ее в своих натурфилософских теориях. Так, например, Анаксимандр из Милета, живший в первой половине VI в. до н. э., использовал симметрию в своей космологической теории, где в центре мира поместил Землю — главное, по его мнению, тело мира. Она должна была иметь совершенную, симметричную форму, форму цилиндра, а на периферии вращаются огромные огненные кольца, закрытые воздушными облаками и дырками, которые и кажутся нам звездами. Земля расположена точно в центре, и здесь симметрия имеет смысл равновесия.

Весы известны человеку с III в. до н. э. В состоянии равновесия массы грузов на разных концах коромысла одинаковы — положение коромысла симметрично относительно центра тяжести. Симметрия — это не только равновесие, но и покой: стоит добавить на одну из чашек весов дополнительный груз, как они придут в движение. Нарушено равновесие, исчезла симметрия — появилось движение.

Эмпедокл считал Вселенную сферой — воплощением гармонии и покоя. Сферос — огромный однородный шар, порождение двух противоположных стихий — Любви и Вражды. Первая стихия соединяет, вторая — разъединяет. Их гармония — симметрия — приводит к устойчивому, циклическому равновесию мира — Сферосу. Преобладание одной или другой стихией — асимметрия — приводит к циклическому ходу мирового процесса.

Идею симметрии использовали и атомисты — Левкипп и Демокрит. По их учению, мир состоит из пустоты и атомов, из которых построены все тела и души. Таким образом, древнее искусство использовало пространственную симметрию.

Гармония (симметрия) состоит из противоположностей. В пространственной симметрии противоположности явно видны. Например, правая и левая кисти рук человека. Таких противоположностей древние ученые насчитали десять пар, например, чет — нечет, прямое — кривое, правое — левое и т.д.

Леонардо да Винчи не обошел своим вниманием и симметрию. Он рассмотрел равновесие шара, имеющего опору в центре тяжести: две симметричные половины шара уравновешивают друг друга и шар не падает. Как художник он главное внимание уделял изучению законов перспективы и пропорций, с помощью которых выявляются художественные достоинства произведений искусства.

В науку симметрия вошла в 30-х гг. XIX в. в связи с открытием Гесселем 32 кристаллографических классов и появлением теории групп как области чистой математики. Кристаллы наделены наибольшей величиной симметрии из всех реальных объектов, они блещут своей симметрией. Кристаллы — это симметричные тела, структура которых определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Симметрия является основным предметом изучения кристаллографии. Она — основной теоретический принцип и практический метод классификации кристаллов. Симметричной в кристаллографии считается фигура, которая делится без остатка на равные и одинаково расположенные части. Величина симметрии определяется наибольшим числом равных и одинаково расположенных частей фигуры, на которые она делится без остатка.

Э. Галуа предложил классифицировать алгебраические уравнения по их группам симметрии. Ф. Клейн предложил взять идею симметрии в качестве единого принципа при построении различных геометрий.

Выйдя за пределы геометрии, эта идея, развиваясь, сделала очевидным тот факт, что принцип симметрии служит той единственной основой, которая может объединить все разрозненные части огромного здания современной математики. Клейн развил свою концепцию в физике и механике. Программа Клейна как задача поиска различных форм симметрии выходит за рамки не только геометрии, но и всей математики в целом, превращается в проблему поиска единого принципа для всего естествознания.








Дата добавления: 2016-02-20; просмотров: 1242;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.029 сек.