ВИДЫ ПЕРЕДАТОЧНЫХ МЕХАНИЗМОВ
Электрическим приводом (ЭП) называется электромеханическое устройство, сообщающее движение рабочему органу производственной машины и состоящее из электродвигателя с аппаратурой (системой) управления и механической передачи. Другими словами, можно сказать, учитывая рассмотренное выше понятие привода, что электропривод – это привод, в котором в качестве двигателя используется именно электрический двигатель с аппаратурой его управления.
Автоматизированный электропривод (АЭП) – это электромеханическое устройство, предназначенное для приведения рабочего органа производственной машины и управления ее технологическим процессом, состоящее из электродвигателя, преобразовательного, передаточного и управляющего устройств. Преобразовательное устройство (между электрической питающей сетью и электродвигателем) служит для преобразования неизменных параметров электроэнергии питающей сети в переменные в соответствии с управлением регулируемого электропривода, а управляющее устройство – для обеспечения оптимального управления по определенным критериям.
В настоящее время используются в основном полупроводниковые преобразовательные устройства (транзисторные, тиристорные), которые преобразуют трехфазное напряжение переменного тока промышленной сети в постоянное напряжение или в напряжение также трехфазное переменного тока, но другой величины и другой частоты. Современный автоматизированный электропривод может представлять собой целый комплекс электрических машин, аппаратов и систем управления, например АЭП промышленных роботов.
Под управлением электропривода понимается не только пуск, торможение, реверс, но и регулирование скорости в соответствии с требованиями технологического процесса.
Под регулированием скорости понимается целенаправленное ее изменение по воле оператора, а также средствами автоматики, в соответствии с требованиями технологического процесса. Используют в основном электрические методы регулирования скорости, которые осуществляются воздействием на параметры электрической цепи двигателя или на параметры источников питания. Более совершенные системы регулирования скорости основаны на использовании замкнутых систем управления.
Структурная схема АЭП. Структурная схема АЭП представлена на рис. 1.1. Электрическая мощность, потребляемая электроприводом от электрической сети (ЭС), в силовой части преобразовательного устройства (СПрУ) преобразуется в регулируемую по показателям электрическую мощность, которая подводится к обмоткам электродвигателя. На схеме двигатель представлен двумя элементами – электромеханическим преобразователем ЭМП, преобразующим электрическую мощность в механическую, и массой ротора РД, на которую воздействует вращающий момент двигателя М при угловой скорости ω. Механическая мощность от ротора электродвигателя передается передаточному механизму ПМ, в котором она преобразуется и передается к исполнительному органу рабочей машины РМ.
Преобразовательное устройство ПрУ состоит из силовой части СПрУ и информационной части (или системы управления) ИПрУ. Информационная часть получает командные сигналы от задающего устройства и информацию о параметрах состояния электропривода и хода технологического процесса от соответствующих датчиков обратных связей. На основании этих данных в соответствии с заложенным алгоритмом (программой) здесь вырабатываются определенные воздействия на СПрУ, а от него и на ЭМП двигателя, управляющие таким образом движением механической части и ходом технологического процесса РМ.
Краткий обзор пути развития электропривода. Для получения механической энергии в XIX в. долгое время применялись паровые машины. Котел и паровую машину устанавливали в отдельном здании на заводском дворе. Движение от паровой машины передавалось в производственное многоэтажное здание с помощью ременных или канатных передач. Внутри производственных помещений движение распределялось посредством многочисленных трансмиссий. Это был общезаводской паровой привод. В дальнейшем паровую машину заменил электрический двигатель.
Первый электродвигатель изобретен в 1834 г. русским академиком Б. С. Якоби. Это был электродвигатель постоянного тока вращательного движения. В 1838 г. Б. С. Якоби создал и первый электропривод. Он установил свой электродвигатель, питаемый от батареи гальванических элементов, на небольшом катере, который с 12 пассажирами прошел испытания на Неве. Этим была доказана возможность практического применения электропривода.
Однако до конца XIX в.пар и вода оставались основной силой, приводившей в движение станки и механизмы в промышленности.
В 80-х годах XIX в.было открыто явление вращающегося магнитного поля (Г. Феррарис, Н. Тесла). В 1891 г. русский инженер М. О. Доливо-Добровольский, используя это явление, изобрел трехфазный асинхронный двигатель, который благодаря своей простоте и надежности до настоящего времени широко распространен на промышленных предприятиях.
Основные этапы развития электропривода. После изобретения электрических двигателей общезаводской паровой привод был заменен на электрический. Установку из паровой машины и генератора электрической энергии (электрическую станцию) строили в стороне от завода (вблизи рек, разработок торфа, угля и пр.), а в заводском корпусе устанавливали электродвигатель. Отпала необходимость в механической передаче движения через заводские дворы и стены корпусов. Это был общезаводской электрический привод.
Неудобства распределения механической энергии от электродвигателя внутри здания с помощью междуэтажных механических передач послужили причиной возникновения группового электропривода. В этом случае производственные машины разбивались на группы, приводимые в движение отдельными электродвигателями достаточной мощности, а движение к производственным машинам в группе по-прежнему передавалось через трансмиссии. Такой привод был неэкономичным, потому что были велики потери в трансмиссиях. Групповой электропривод характерен для промышленных предприятий дореволюционной России.
Затем групповой электропривод был заменен одиночным электроприводом, в котором каждый станок имел отдельный двигатель. Еще позже станки с несколькими подвижными узлами комплектовались отдельными электродвигателями для каждого узла – это был уже многодвигательный электропривод.
Число электродвигателей, устанавливаемых на одном станке, может доходить до нескольких десятков. Быстрое и точное ручное управление такими электродвигателями (с помощью кнопок, переключателей) для рабочего становится трудным, а иногда и непосильным. По этой причине стали применять автоматизированный многодвигательный электропривод, в котором управление электродвигателями (пуск, останов, реверс в нужное время и в требуемых сочетаниях) осуществляют автоматизированные системы управления (АСУ). В таких АЭП для быстрого, точного и надежного управления используют последние достижения электроавтоматики, электроники, микропроцессорной и полупроводниковой техники.
АСУ обращает станок в автомат, дает возможность создавать автоматические линии (при управлении несколькими станками, обеспечивающими последовательную обработку одной детали), участки, цехи и даже заводы-автоматы. Перенос деталей со станка на станок, их подъем, спуск, поворот, зажатие в приспособлении и другие операции производят разного рода промышленные роботы: автоматические рули, транспортеры, подъемники, поворотные столы, электроключи, электрогайковерты и пр.
Изучение вопросов электрооборудования станков, АЭП необходимо для понимания современных средств и возможностей в области автоматизации современных станков, автоматических линий и заводов. Без таких знаний нельзя ни спроектировать новый станок, ни объяснить работу современного станка с автоматизированной системой управления. Поэтому знание вопросов АЭП и электрооборудования станков для инженера-механика, конструирующего или эксплуатирующего современные станки и автоматические линии, является необходимым.
ВИДЫ ПЕРЕДАТОЧНЫХ МЕХАНИЗМОВ
Дата добавления: 2015-12-01; просмотров: 3450;