БИОТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ 26 страница
Фиксация атмосферного азота (диазотрофность) — свойство прокариотических организмов. Азотфиксирующие организмы делятся на симбиотические (90 %) и свободноживущие (10 %). Фиксация атмосферного азота связана преимущественно с симбиоти- ческими микроорганизмами. В настоящее время известны четыре основные системы симбиоза, имеющие большое значение не только для естественных сообществ, но и для сельского хозяйства, лесоводства. Это Rhizobia — бобовые растения, Azolla-Anabaena — рис, Actinomyces — деревья, Spirillum — травы. Атмосферный азот фиксируется благодаря уникальному ферменту — нитрогеназе.
В 1960 г. американские исследователи показали, что нитрогена- за сохраняет свою активность в бесклеточных экстрактах Clostridium pasteurianum. Это послужило толчком для начала активных исследований биохимии азотфиксации, структуры и механизма действия нитрогеназы. К 1981 г. нитрогеназа была выделена из 36 видов микроорганизмов. Она считается одним из наиболее сложных ферментов, использующих простые субстраты. Кроме азота нитрогеназа может восстанавливать ацетилен, цианистый водород, закись азота и некоторые другие соединения. Восстановление ацетилена в этилен позволило разработать надежный тест для обнаружения азотфиксирующей активности. Непременное условие работы нитрогеназы — ее защита от кислорода, который ингибиру- ет не только активность нитрогеназы, но и ее биосинтез.
Начиная с 1970 г. стали появляться серьезные работы по изучению генов азотфиксации и их переносу в клетки Klebsiella pneumoniae
qbalfmvsuxneykdh j ш m шл ш mm м н м ■ шш □□□□ ■■ sua
24 • Ю3 пар нуклеотидов
Рис. 5.18. Генетическая карта области «//-генов хромосомы Klebsiella pneumoniae (по А. Сассон, 1987). Оперон HDKY кодирует белки нитрогеназы; стрелки обозначают направление транскрипции
и Е. coli. С помощью техники рекомбинантных ДНК были составлены генетические карты генов азотфиксации («//-генов), которые показали сходную организацию генов у большей части азот- фиксирующих организмов. Было установлено, что «//"-гены расположены между генами, кодирующими биосинтез гистидина (his) и генами, ответственными за усвоение шикимовой кислоты (shiA). Гены, кодирующие синтез белковых субъединиц компонентов нитрогеназы, образуют единый оперон (рис. 5.18). В клетках симбиоти- ческих бактерий Rhizobium leguminosarum, R. meliloti, R. trifolii плазмиды, кроме структурных генов нитрогеназы, содержат гены, отвечающие за развитие корневых клубеньков у определенных видов бобовых.
Конструирование плазмид, несущих «//-гены, позволяет передавать способность к фиксации азота организмам, не обладающим этим свойством. Среди бактерий, кроме Е. coli, такой перенос осуществлен для бактерий Salmonella typhimurium, Erwinia herbicola и других. Однако подобные манипуляции могут приводить к нежелательным эффектам. Так, перенос генов в штамм Erwinia (бактерии, вызывающие гниение растений) может усилить его патогенное действие. Кроме того, существует вероятность случайного переноса вместе с «//-генами каких-то нежелательных генов.
В настоящее время внимание ученых привлекают проблемы введения генов азотфиксации в клетки растений; создания ризоцено-, зов между небобовыми растениями (особенно злаками) и азотфик- сирующими организмами; повышения мощности корневой системы бобовых растений для увеличения на ней количества клубень-: ков. Кроме того, предполагается создание новых азотфиксирующих систем путем введения азотфиксирующих микроорганизмов в кал-; лусные ткани растений с последущим образованием из них расте-i ний-регенерантов, а также повышение эффективности фиксаций; азота путем воздействия на гены, контролирующие этот процесс, i
Наиболее интересна первая проблема — введение «//-генов ri клетки растений. Однако ее решение сопряжено с рядом трудно^ стей. Основная — разрушение нитрогеназы под воздействием киЫ лорода. У азотфиксирующих микроорганизмов существует ряд при-* способлений, защищающих бактерии от свободного кислорода
Среди них присутствие в клетках клубеньков легоглобина — гем- содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гете- роцистах, а фотосинтез — в обычных клетках. Поэтому кислород, выделяющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только nif-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может быть не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота.
Таким образом, более перспективно повышение эффективности фиксации азота в уже существующих природных системах за счет воздействия на гены, контролирующие этот процесс, а также увеличение мощности корневой системы бобовых растений и создание новых азотфиксирующих систем с помощью методов клеточной инженерии.
5.10.5. Устойчивость растений к фитопатогенам
Наибольший урон растениям наносят грибные, бактериальные и вирусные патогены. В растении существуют защитные механизмы, которые в большей или меньшей степени (в зависимости от устойчивости растений) начинают действовать в ответ на проникновение фитопатогенов в клетку. Во-первых, начинается синтез соединений, вызывающих гибель патогенов. Примером могут служить специфические белки PRP (pathogen related proteins). Из них наиболее изучены ферменты хитиназы и |3-1,3-глюконазы, которые угнетают рост грибов и некоторых видов бактерий, разрушая их клеточные стенки. Во-вторых, могут создаваться структурные барьеры, препятствующие распространению инфекции. Это достигается благодаря лигнификации клеточных стенок. Той же цели — защите клеток — служит присутствие в клеточных стенках белков-экстенсинов и олигосахаридов.
Применение методов генетической инженерии, использующих естественные защитные механизмы, позволяет получать трансгенные растения, устойчивые к грибной, бактериальной и вирусной инфекции. Так, гены хитиназы и глюконазы кодируются одиночными генами. Благодаря этому были получены трансгенные растения табака и турнепса, в состав генома которых ввели ген хити- назы. Лабораторные и полевые испытания выявили большую устойчивость трансгенных растений. В растения томатов был введеь ген защитных пептидов редьки (дефензинов) rs, отвечающих зг. устойчивость к фитопатогенным грибам. Наконец, перспективны клонирование и перенос генов, кодирующих специфические белки (small antibiotic-like proteins), содержащиеся в семенах многи:. растений. Эти белки защищают семена в период покоя и во время прорастания от грибных и бактериальных инфекций.
Другой подход к получению трансгенных растений, устойчивых к вирусной инфекции, состоит во введении в геном исходны;, растений гена оболочки вируса. Это приводит к ингибированик размножения вируса и снижению инфицированности. Благодаря такому подходу был получен стойкий антивирусный эффект у растений табака, трансформированных геном оболочки вируса та бачной мозаики (ВТМ).
Еще одна группа методов получения трансгенных растений устойчивых к действию фитовирусов, включает введение и экспрессию генов антивирусных антител, вирусных сателлитных PHL. Интересный эффект дало введение в геном растений гена человеческого интерферона JFN — одного из ключевых белков индукции иммунитета у млекопитающих. С помощью вируса мозаики цветной капусты геном интерферона были трансформированы ра стения турнепса, табака, картофеля, что повысило устойчивость этих растений к вирусным заболеваниям. Однако в настоящее время более перспективными считаются методы, основанные на использовании растительных генов, обусловливающих высокую устойчивость трансформации растений и низкую устойчивость к фи- топатогенам.
5.10.6. Устойчивость растений к гербицидам
В настоящее время в сельском хозяйстве широко использую- гербициды — химические соединения, применяемые для уничто жения сорной растительности. Гербициды широкого спектра дей, ствия могут не только уничтожать сорняки, но и угнетать рос культурных растений. В связи с этим возникает необходимость создании растений, устойчивых к этим веществам. Существует да подхода к решению этой проблемы: прямая селекция устойчивы к гербицидам мутантных форм растений, или мутантных клетоЧ| ных штаммов (клеточная селекция), и генно-инженерный метод который состоит во введении в растения генов гербицид-резиС тентности растительного или бактериального происхождения. i
Изучение механизмов устойчивости служит основой для а здания трансгенных растений. Оно включает четыре основных этап выявление мишеней действия гербицидов в клетке растений; й бор растений, устойчивых к данному гербициду в качестве истой
154 1 ника генов резистентности; идентификация и клонирование этих генов; изучение их экспрессии для использования в трансгенных конструкциях.
Благодаря использованию методов генетической инженерии были созданы новые, устойчивые к различным гербицидам сельскохозяйственные культуры. В геном этих культур вводились мутантные гены, кодирующие синтез ферментов, на которые гербициды (ат- разин, бромоксилин, имидазол) не оказывают негативного действия. Например, растения лядвенца рогатого (Lotus corniculatus) были трансформированы с помощью штамма А281/рСВЕ21. Эта бактерия содержит плазмиду со встроенным геном bar, кодирующим фермент, придающий устойчивость к гербициду биалофосу. Трансгенные растения содержали ген bar и были невосприимчивы к гербициду (А. М. Стефанович, Г. Н. Ралдугина, 1999). Однако в тканях таких растений наблюдается накопление гербицидов, и использовать эти растения можно только в технических целях. Вместе с тем было показано, что введение генов, кодирующих другие ферменты, позволяет проводить детоксикацию гербицидов, создавая, таким образом, растения, пригодные в пищу. Так, деток- сикация действующего, вещества гербицида 2,4-D осуществляется при переносе в растение гена монооксигеназы, глифосата — при введении гена фосфонатазы, бромоксилина — гена нитрилазы.
5.10.7. Устойчивость растений к насекомым
Создание трансгенных растений, устойчивых к насекомым, с помощью методов генной инженерии стало возможным после того, как было обнаружено, что бактерии Bacillus thurengiensis синтезируют специфический белок — прототоксин, высокотоксичный для насекомых. Попадая в кишечник насекомого, этот белок расщепляется, образуя активную форму токсина. В результате насекомое погибает. Ген, ответственный за экспрессию прототоксина, удалось обнаружить, выделить из генома В. thurengiensis и с помощью бинарного вектора ввести в геном растений табака. Аналогичным образом растения томата были трансформированы генами другого инсектицидного белка — эндотоксина. В итоге были получены первые трансгенные растения, которые не повреждали насекомые.
5.10.8. Устойчивость растений к абиотическим стрессам
Адаптация растений в природе и, следовательно, их способность к выживанию при неблагоприятных условиях среды обеспечиваются тремя способами. Во-первых, с помощью физиологических механизмов, позволяющих растениям избежать неблагоприятных воздействий (например, период покоя). Во-вторых, адаптация осуществляется благодаря морфологическим приспособлениям: толстому слою кутикулы на листьях, уменьшению листовой поверхности, ее опушению, которые предотвращают излищ нюю потерю влаги растениями. В-третьих, негативное влияние внешней среды может быть преодолено с помощью изменений метаболизма. Именно этот последний адаптационный механизь наиболее доступен для генно-инженерных исследований. Например, известно, что при водном стрессе у высших растений осноь- ным защитным механизмом, связанным с изменением метаболизма, является накопление в клетках пролина, глицинбеатина и других осмопротекторов.
Экспериментально было показано, что стрессовый ответ у бактерий и высших растений выражается сходно. И у растений, и v бактерий начинается усиленный синтез молекул осмопротекторов, механизм действия которых состоит в установлении осмотк ческого баланса между цитоплазмой и окружающей средой, а также стабилизации белковых молекул. В бактериях биоситнез пролищ, хорошо изучен, известны гены, кодирующие ферменты этогь процесса. Избирательная экспрессия генов осмопротекторов мо» жет привести к увеличению адаптационных качеств растения и следовательно, к увеличению его продуктивности. Поэтому следуй* щим шагом на пути создания устойчивых к стрессам растени было клонирование бактериальных генов, получение векторныЦ конструкций на основе Ti-плазмиды и введение их в растени. Полученные трансгены синтезировали и накапливали пролин 4—6 раз интенсивнее, чем обычные растения. Трансгенные побё ги могли укореняться и расти при концентрации соли в срег 20 г/л (350 мМ).
У растений адаптация к низким температурам сопряжена с мн начисленными физиологическими изменениями. При этом накаг ливаются растворимые вещества, понижающие осмотический пс тенциал клеток и уменьшающие вероятность образования кру, ных кристаллов льда. Кроме того, синтезируется большое кол чество белков с повышенным содержанием сульфгидрильных груг (-SH), которые обладают особо высокой способностью к гидрат ции, а гидратационная вода, как известно, практически не с мерзает. Однако повышение устойчивости растений к замерзаш с помощью методов генной инженерии началось с изменения гей ма не растений, а бактерий. Исследователи Колорадского униве? ситета (США) выяснили, что повреждению растений при замер? нии способствуют бактерии эпифитной (поверхностной) мик$| флоры Pseudomonas syringae и Erwinia herbicola, белки которых ci жат центрами кристаллизации. Если обезвредить бактерии стреп мицином, то растения не замерзают при температуре - 8 °С. Но стр томицин дорог и вреден, поэтому выгоднее было изменить ге тику данного штамма бактерий, вырезав из генома определен! ген. Растения, инфицированные мутантным штаммом P. syrin,:
росли при отрицательной температуре. Однако оказалось, что бактерии мутантного штамма более живучи и способны вытеснить природный штамм, который, попадая в верхние слои атмосферы, способствует кристаллизации атмосферной влаги. Вероятно, уничтожение природного штамма могло бы привести к экологической катастрофе.
Следует отметить, что работы по генной инженерии, возможности манипулирования генами растений представляют огромный интерес для фундаментальных исследований. Эти работы позволяют изучать основы молекулярной и клеточной биологии растительной клетки, глубинные механизмы процессов, происходящих в ней. Вместе с тем нельзя не задуматься о своевременности прикладного применения результатов генно-инженерных исследований.
Глава 6
ОСНОВЫ КЛЕТОЧНОЙ ИНЖЕНЕРИИ РАСТЕНИЙ
6.1. КУЛЬТУРА КЛЕТОК И ТКАНЕЙ, КРАТКАЯ ИСТОРИЯ
ПРЕДМЕТА
Клеточная инженерия — одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта — изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности — уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.
Бурное развитие клеточной инженерии приходится на 50-е годы прошлого века, хотя первые попытки выращивания изолированных кусочков ткани были сделаны гораздо раньше. В конце XIX — начале XX в. немецкие ученые X. Фехтинг (1892), С. Рехингер (1893), Дж. Ха- берландт (1902) сделали первую неудачную попытку стимуляции роста растительных тканей и органов, помещенных на фильтровальную бумагу, пропитанную сахарозой. Несмотря на отсутствие положительного результата, их работы представляют большой интерес. В них были высказаны идеи, которые намного опередили развитие науки того времени и которые нашли свое подтверждение несколько десятилетий спустя. Так, Фехтинг предположил, что полярность присуща не только организму или органу растения, но и самой клетке. Рехингер определил минимальный размер сегмента, образующего каллус. Согласно его исследованиям, в кусочках ткани тоньше 1,5—2,0 мм клетки не делились. Хаберландг впервые четко сформулировал идеи о возможности культивирования in vitro изолированных клеток растений и о тотипотентности клеток, т. е. способности любой соматической клетки полностью реа- лизовывать свой потенциал развития. Иначе говоря, о способности каждой растительной клетки давать начало целому организму.
Первые успехи были получены в 1922 г. американским ученым В. Роббинсом и немецким ученым В. Котте. Независимо друг от друга они показали возможность выращивания меристем кончиков корней томатов и кукурузы на синтетической питательной среде. Считается, что их работы легли в основу метода культуры изолированных корней растения.
Настоящее развитие метода культуры тканей и клеток высших растений началось в 1932 г. с работ французского ученого Р. Готре и американского исследователя Ф.Уайта. Они показали, что при периодической пересадке на свежую питательную среду кончики корней могут расти неограниченно долго. Кроме того, ими были разработаны методы культивирования новых объектов: тканей древесных растений камбиального происхождения, каллусных тканей запасающей паренхимы (Р. Готре), а также тканей растительных опухолей (Ф.Уайт). С этого момента начинаются массовые исследования по разработке новых питательных сред, включающих даже такие неконтролируемые компоненты, как березовый сок или эндосперм кокоса, и по введению в культуру новых объектов. К 1959 г. насчитывалось уже 142 вида высших растений, выращиваемых в стерильной культуре.
В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов — цитокининов — оказалось, что при совместном их действии с другим классом фитогормонов — ауксинами — появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.
В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккин- гом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод клонального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани-«нянь- ки». Этот метод был разработан в России в 1969 г. в Институте физиологии растений им. К. А.Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.
6.2. МЕТОДЫ И УСЛОВИЯ КУЛЬТИВИРОВАНИЯ
ИЗОЛИРОВАННЫХ ТКАНЕЙ И КЛЕТОК РАСТЕНИЙ
Выращивание изолированных клеток и тканей на искусственных питательных средах в стерильных условиях (in vitro) получило название метода культуры изолированных тканей.
В связи с тем что в жизни человека наибольшее значение имеют семенные растения, методы и условия для их культивирования разработаны лучше, чем для голосеменных растений или водорослей, выращивание которых в стерильных условиях вызывает определенные затруднения. Однако независимо от принадлежности растений к той или иной таксономической группе существуют общие требования к выращиванию объектов в культуре in vitro.
Асептика. Прежде всего культивирование фрагментов ткани или органа растения — эксплантов, а тем более отдельных клеток требует соблюдения полной асептики. Микроорганизмы, которые могут попасть в питательную среду, выделяют токсины, ингибирую- щие рост клеток и приводящие культуру к гибели. Поэтому при всех манипуляциях с клетками и тканями при культивировании in vitro соблюдают определенные правила асептики в ламинар- боксе или в асептических комнатах. В первом случае асептика достигается подачей профильтрованного стерильного воздуха, направленного из ламинкар-бокса наружу, на работающего. Асептические комнаты стерилизуют с помощью ультрафиолетовых ламп, а работают в таких помещениях в стерильной одежде. Рабочую поверхность столов в асептических комнатах и инструменты перед работой дополнительно стерилизуют спиртом.
Чистую посуду, предварительно завернутую в бумагу или в фольгу, инструменты, бумагу, вату стерилизуют сухим жаром в сушильном шкафу при температуре 160 °С в течение 1,5 —2 ч. Питательные среды стерилизуют в автоклаве при температуре 120 °С и повышенном давлении в течение 15 — 20 мин. Если в состав питательных сред входят вещества, разрушающиеся при автоклавировании, их следует стерилизовать путем фильтрации через бактериальный фильтр. Затем стерильные профильтрованные компоненты добавляют в проавтоклавированную среду, охлажденную до температуры 40 °С.
Растительные ткани сами по себе могут служить серьезным источником заражения, так как на их поверхности всегда находится эпи- фитная микрофлора. Поэтому необходима поверхностная стерилизация, которую проводят следующим образом. Предварительно часть растения, из которой будет извлечен эксплант, промывают водой с мылом и споласкивают чистой водой. Затем растительный материал стерилизуют в растворах дезинфицирующих веществ. Некоторые из этих веществ, а также время стерилизации представлены в табл. 6.1.
Таблица 6.1
Стерилизация исходного растительного материала
(по Р. Г. Бутенко, 1999)
|
После выдерживания эксплантов в дезинфицирующем растворе их несколько раз промывают в дистиллированной воде и скальпелем удаляют наружный слой клеток на срезах эксплантов, так как он может быть поврежден при стерилизации.
Микроорганизмы могут находиться и внутри растительной ткани. Наиболее часто внутреннее инфицирование встречается у тропических и субтропических растений. Поэтому кроме поверхностной стерилизации иногда приходится применять антибиотики, которые и убивают микробную флору внутри ткани. Следует, однако, заметить, что подобная обработка не всегда приводит к стерилизации внутренних тканей, так как трудно выбрать направленно действующий антибиотик.
Питательные среды. Изолированные клетки и ткани культивируют на многокомпонентных питательных средах. Они могут существенно различаться по своему составу, однако, в состав всех сред обязательно входят необходимые растениям макро- и микроэлементы, углеводы, витамины, фитогормоны и их синтетические аналоги. Углеводы (обычно это сахароза или глюкоза) входят в состав любой питательной смеси в концентрации 2 — 3%. Они необходимы в качестве питательного компонента, так как большинство каллусных тканей лишено хлорофилла и не способно к автотрофному питанию. Поэтому их выращивают в условиях рассеянного освещения или в темноте. Исключение составляет кал- лусная ткань мандрагоры, амаранта и некоторых других растений.
Обязательными компонентами питательных сред должны быть ^ ауксины, вызывающие дедифференцировку клеток экспланта, и ци- токинины, индуцирующие клеточные деления. При изменении соотношения между этими фитогормонами или при добавлении других фитогормонов могут быть вызваны разные типы морфогенеза.
Высокое содержание нитратов, ионов аммония, калия, фосфата способствует быстрому росту клеток. Истощение среды значительно снижает рост и процессы вторичного метаболизма. Однако изначально низкое содержание фосфатов в питательной среде способно стимулировать синтез вторичных метаболитов. Установлено, что культивирование каллусов солодки голой на среде с половинной концентрацией азота и фосфора в темноте увеличивает содержание фенольных соединений в 1,6 раза по сравнению с каллусами, растущими на полной среде. В среду могут быть добавлены эндоспермы незрелых зародышей (кокосовый орех, конский каштан и др.), пасока некоторых деревьев, различные экстракты (солодовый, дрожжевой, томатный сок). Введение их в сре-. ду дает интересные результаты, но такие эксперименты трудно воспроизводимы, так как действующий компонент, как правило, точно неизвестен. Например, добавление в питательную среду отдельных фракций кокосового молока не давало никаких результатов, в то время как нефракционированный эндосперм вызывал деление клеток.
При приготовлении твердых питательных сред для поверхностного выращивания каллусных тканей используют очищенный агар-агар — полисахарид, получаемый из морских водорослей. В качестве примеров в табл. 6.2 приведены составы наиболее распространенных питательных сред.
Среда Мурасиге и Скуга — самая универсальная. Она пригодна для образования каллусов, поддержания неорганизованного кал-, лусного роста, индукции морфогенеза у большинства двудольных растений. Так, изменение соотношения ауксина и кинетина при- водит к образованию либо корней (преобладание ауксина), либо; стеблевых культур (преобладание кинетина).
Среда Гамборга и Эвелега хорошо подходит для культивирования клеток и тканей бобовых растений и злаков, среда Уайта обес-* печивает укоренение побегов и нормальный рост стебля после регенерации, а среда Нича и Нич пригодна для индукции андро-i генеза в культуре пыльников.
Физические факторы. На рост и развитие растительных тканей; in vitro большое влияние оказывают физические факторы — свет,; температура, аэрация, влажность. |
Свет. Большинство каллусных тканей могут расти в условия^ слабого освещения или в темноте, так как они не способны фото*; синтезировать. Вместе с тем свет может выступать как факторУ обеспечивающий морфогенез и активирующий процессы вторично!
Состав питательных сред, применяемых при культивировании клеток и тканей (по Р. Г. Бутенко, 1999)
|
Дата добавления: 2016-02-09; просмотров: 899;