БИОТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ 12 страница

После выдерживания эксплантов в дезинфицирующем раство­ре их несколько раз промывают в дистиллированной воде и скаль­пелем удаляют наружный слой клеток на срезах эксплантов, так как он может быть поврежден при стерилизации.

Микроорганизмы могут находиться и внутри растительной тка­ни. Наиболее часто внутреннее инфицирование встречается у тро­пических и субтропических растений. Поэтому кроме поверхност­ной стерилизации иногда приходится применять антибиотики, ко­торые и убивают микробную флору внутри ткани. Следует, одна­ко, заметить, что подобная обработка не всегда приводит к сте­рилизации внутренних тканей, так как трудно выбрать направ­ленно действующий антибиотик.

Питательные среды. Изолированные клетки и ткани культиви­руют на многокомпонентных питательных средах. Они могут су­щественно различаться по своему составу, однако, в состав всех сред обязательно входят необходимые растениям макро- и мик­роэлементы, углеводы, витамины, фитогормоны и их синтети­ческие аналоги. Углеводы (обычно это сахароза или глюкоза) вхо­дят в состав любой питательной смеси в концентрации 2 — 3%. Они необходимы в качестве питательного компонента, так как большинство каллусных тканей лишено хлорофилла и не способ­но к автотрофному питанию. Поэтому их выращивают в условиях рассеянного освещения или в темноте. Исключение составляет кал- лусная ткань мандрагоры, амаранта и некоторых других растений.

Обязательными компонентами питательных сред должны быть ^ ауксины, вызывающие дедифференцировку клеток экспланта, и ци- токинины, индуцирующие клеточные деления. При изменении со­отношения между этими фитогормонами или при добавлении дру­гих фитогормонов могут быть вызваны разные типы морфогенеза.

Высокое содержание нитратов, ионов аммония, калия, фос­фата способствует быстрому росту клеток. Истощение среды зна­чительно снижает рост и процессы вторичного метаболизма. Од­нако изначально низкое содержание фосфатов в питательной сре­де способно стимулировать синтез вторичных метаболитов. Уста­новлено, что культивирование каллусов солодки голой на среде с половинной концентрацией азота и фосфора в темноте увеличи­вает содержание фенольных соединений в 1,6 раза по сравнению с каллусами, растущими на полной среде. В среду могут быть до­бавлены эндоспермы незрелых зародышей (кокосовый орех, кон­ский каштан и др.), пасока некоторых деревьев, различные экст­ракты (солодовый, дрожжевой, томатный сок). Введение их в сре-. ду дает интересные результаты, но такие эксперименты трудно воспроизводимы, так как действующий компонент, как правило, точно неизвестен. Например, добавление в питательную среду от­дельных фракций кокосового молока не давало никаких результа­тов, в то время как нефракционированный эндосперм вызывал деление клеток.

При приготовлении твердых питательных сред для поверхнос­тного выращивания каллусных тканей используют очищенный агар-агар — полисахарид, получаемый из морских водорослей. В качестве примеров в табл. 6.2 приведены составы наиболее рас­пространенных питательных сред.

Среда Мурасиге и Скуга — самая универсальная. Она пригодна для образования каллусов, поддержания неорганизованного кал-, лусного роста, индукции морфогенеза у большинства двудольных растений. Так, изменение соотношения ауксина и кинетина при- водит к образованию либо корней (преобладание ауксина), либо; стеблевых культур (преобладание кинетина).

Среда Гамборга и Эвелега хорошо подходит для культивирова­ния клеток и тканей бобовых растений и злаков, среда Уайта обес-* печивает укоренение побегов и нормальный рост стебля после регенерации, а среда Нича и Нич пригодна для индукции андроц генеза в культуре пыльников.

Физические факторы. На рост и развитие растительных тканей; in vitro большое влияние оказывают физические факторы — свет,; температура, аэрация, влажность. |

Свет. Большинство каллусных тканей могут расти в условия^ слабого освещения или в темноте, так как они не способны фото*; синтезировать. Вместе с тем свет может выступать как фактору обеспечивающий морфогенез и активирующий процессы вторично!

Таблица 6.2

Состав питательных сред, применяемых при культивировании клеток и тканей (по Р. Г. Бутенко, 1999)

  Концентрация питательных сред, мг/л
Компонент сред Мурасиге и Гамборга и Уайта, Нича и Нич,
  Скуга, 1962 Эвелега, 1968 1974-1975
KN03
NH4NO3
Ca(N03)2
Ca(N03)2-4H20
(NH4)2S04
MgS04-7H20
CaCl2H20  
CaClr2H20
KC1  
KH2P04
NaH2P04H20
MnS04H20
MnS0„-4H20 22,3
ZnS04-4H20 8,6
ZnS04-7H20
H3B04 6,2
CuS04-5H20 0,025 0,075 0,025
Na2Mo04-2H20 0,25 0,25 0,25
CoCl2-6H20 0,025
FeS04-7H20 27,8 27,8
Na EDTA-2H20 37,3 37,3
Секвестрен 330-Fe  
Мезоинозит
Аскорбиновая кислота
Тиамин-HCl 0,5
Пиридоксин-HCl 0,5
Никотиновая кислота 0,5
Сахароза 30 000 60 000
Агар «Дифко», гель-
рит, агароза        

 

го синтеза. В качестве источника света используют люминесцент­ные лампы. Для большинства травянистых растений оптимум ос­вещенности составляет примерно 1000 люкс. Слишком низкая (300 люкс) или высокая (3000—10 000 люкс) освещенность подавляет рост. Освещение может влиять на метаболизм каллусных клеток. Так, в культурах чайного растения под действием света увеличивался биосинтез полифенолов. Напротив, в культуре клеток Scopolia parvi- flora свет подавлял образование алкалоидов. Кроме интенсивности освещенности на культуру ткани и ее физиологические особенно­сти влияет качество света. Так, более 20 флавонов и флавоноловьп гликозидов образуется в культурах клеток петрушки после освеще­ния ее непрерывным люминесцентным светом «холодный белый» Вместе с тем синтез флавоновых гликозидов активируется при по­следовательном облучении ультрафиолетовым светом, а затем све­том, лежащим в области «красный—длинноволновый красный*

Температура. Для большинства каллусных культур оптимальна температура 26 °С. В то же время каллусы и культуры клеток диос кореи дельтовидной хорошо растут даже при температуре 32 °С. Б отличие от роста культур клеток и тканей индукция их морфоге­неза требует более низких температур (18 — 20 °С). Влияние тем­пературы на метаболизм клеток in vitro изучено слабо. Есть дан­ные, что в каллусных культурах максимальное образование алка­лоидов наблюдалось при температуре 25 °С, а при повышении тем­пературы резко снижалось. В суспензионных культурах клеток Ipomoea содержание жирных кислот значительно увеличивалось, если их выращивали при субоптимальных температурах роста (15 °С) Поэтому при выращивании культуры in vitro необходимо тща­тельно изучать влияние всех абиотических факторов, в том числе температурного, на рост и метаболизм клеток.

Аэрация. Для выращивания суспензионных культур большое значение имеет аэрация. Особенно важно снабжение воздухом куль­тивируемых клеток в больших объемах ферментеров.

При сравнении разных типов ферментеров было показано, что синтез вторичных метаболитов в суспензионной культуре был наи­большим при подаче воздуха снизу. При выращивании клеток в малых объемах (в колбах) нормальная аэрация достигается при постоянном перемешивании суспензии.

Влажность. Оптимальная влажность в помещении, где расту!, культуры, должна составлять 60 — 70%.

Таким образом, культивирование клеток и тканей зависит от мно­гих факторов внешней среды, и действие их не всегда хорошо изве? стно. Поэтому при введении в культуру нового вида растений необ-т ходимо прежде всего тщательно изучить влияние физических фак торов на рост и физиологические характеристики этой культуры.

6.3. ДВДИФФЕРЕНЦИРОВКА КАК ОСНОВА I КАЛЛУСОГЕНЕЗА |

Культура изолированных тканей обычно представлена каллус ными и гораздо реже опухолевыми тканями. Каллусная ткань об разуется в результате повреждения на целых растениях, а также J стерильной культуре на эксплантах — фрагментах ткани или орга на, используемых для получения первичного каллуса. Возникно­вение каллуса связано с неорганизованным делением (пролифе­рацией) дедифференцированных клеток. Дедифференцировка — основа создания каллусной ткани. В процессе дифференцировки клетки теряют способность делиться. Дедифференцировка — это возвращение клеток в меристематическое состояние, при кото­ром они сохраняют способность к делению. У интактных растений дедифференцировка и индукция каллусогенеза возникают вслед­ствие образования раневых гормонов (травматиновая кислота) при механическом повреждении. Обязательное условие дедифферен- цировки тканей экспланта и превращения их в каллусные клетки, помимо повреждения, — присутствие ауксинов и цитокининов. Среди ауксинов чаще всего используют 2,4-D (2,4-дихлорфенок- сиуксусную кислоту), ИУК (индолил-3-уксусную кислоту), НУК (а-нафтилуксусную кислоту), причем наибольшую активность проявляет 2,4-D. Из цитокининов в искусственные питательные среды обычно вносят кинетин, 6-БАП (6-бензиламинопурин), зеатин. Наиболее активны 6-БАП и зеатин. Функции этих двух групп гормонов в каллусогенезе разные, но они тесно связаны между собой. Ауксины вызывают процессы дедифференцировки клетки, подготавливают ее к делению. Затем цитокинины инициируют деление клеток. Последние исследования свидетельствуют, что аук­сины индуцируют синтез главной протеинкиназы клеточного де­ления P34cdc2, а цитокинины — циклинов. Таким образом, дей­ствие этих гормонов проявляется только при последовательном или одновременном внесении их в среду. Кроме того, оно будет зависеть от физиологического состояния клеток экспланта, от их компетентности к действию тех или иных внешних факторов. Ре­зультаты исследований показали, что полисахариды и какие-то неизвестные индукторы тоже могут вызывать деление клеток, при­водящее к образованию каллуса.

Во время процесса дедифференциации, который у всех клеток сходен, клетки должны утратить характерные черты исходной ткани. В первую очередь они теряют запасные вещества — крахмал, бел­ки, липиды. В них разрушаются специализированные клеточные органеллы, в частности хлоропласты, но возрастает число ами- лопластов. Кроме того, разрушается аппарат Гольджи, перестраи­ваются эндоплазматический ретикулюм и элементы цитоскелета.

Через несколько часов после перенесения экспланта в условия in vitro начинается новый синтез белка. Он связан, вероятно, с механическим повреждением и действием гормонов, сохранив­шихся в экспланте с момента его изоляции из растения. Когда данные гормоны израсходуются, синтез белка прекращается. Если в это время клетки будут культивироваться на питательной среде, содержащей ауксины и цитокинины, то начнется каллусогенез, т.е. в результате дедифференцировки и деления клеток будет образовываться первичный каллус. Таким образом, специализи­рованная клетка растительной ткани становится каллусной в ре­зультате дедифференцировки, т.е. восстановления у нее способ­ности к делению.

6.4. ТИПЫ КУЛЬТУР КЛЕТОК И ТКАНЕЙ

В зависимости от способа, условий культивирования и проис­хождения можно выделить несколько типов культур клеток и тка­ней. Если культивирование происходит поверхностно на агаризо- ванной питательной среде, то образуется каллусная ткань. Она не имеет четко выраженной структуры, но может различаться по плотности. Происхождение и условия выращивания определят, будет ли каллусная ткань рыхлой, средней плотности или плот­ной. Рыхлая каллусная ткань имеет сильно оводненные клетки, легко распадается на небольшие группы клеток и кластеры и по­этому может быть использована для получения суспензионной культуры. Ткань средней плотности характеризуется хорошо выра­женными меристематическими очагами. В ней легко инициируют­ся процессы органогенеза. Наконец, у плотных каллусных тканей различают зоны редуцированного камбия и трахеидоподобных элементов:

Культуры сильно обводненные, легко распадающиеся на отдельные клетки (получение суспензии)

 

Существует также суспензионная культура клеток, которую вы­ращивают в жидкой питательной среде, так называемое глубин­ное культивирование. Клеточные суспензии образуются как из каллусных тканей, так и непосредственно из экспланта. Для полу­чения суспензионных культур предпочтительнее брать каллусы рых­лого типа. Если для этой цели необходимо использовать плотный каллус, то его можно разрыхлить, исключив из питательной среды соли Са2+. С этой же целью можно культивировать ткань на среде, содержащей ауксин 2,4-D или ферменты — пектиназу (0,2 мг/л) и целлюлазу (0,01 мг/л). Наилучший эффект достигается при добав­лении ферментов. Суспензионные культуры клеток можно полу­чить и непосредственно из экспланта по методу Ф. Стюарда. Для этого эксплант помещают в жидкую среду при постоянном авто­матическом перемешивании. Дедифферениированные клетки от­рываются от экспланта, образуя суспензию в питательной среде. Постоянное встряхивание — необходимое условие культивирова­ния клеточных суспензий. Суспензионные клетки делятся в при­сутствии тех же двух групп гормонов (ауксинов и цитокининов), которые индуцируют деление клеток в каллусных тканях. Следо­вательно, можно сказать, что суспензионные культуры представ­лены разными агрегатами каллусных клеток.

Клеточные суспензии играют значительную роль в биотехноло­гии. Они могут быть использованы для получения изолированных протопластов, которые применяют для клеточной селекции, при введении чужеродных ДНК и других процессах. Клеточные суспен­зии культивируют в больших количествах для получения вторич­ных метаболитов, выявления новых веществ, для выращивания клеточной биомассы. Однако увеличение клеточной биомассы в результате деления клеток и синтез вторичных метаболитов разоб­щены во времени. Поэтому необходимо хорошо знать физиологию, свойства клеток в суспензионных культурах, чтобы получить макси­мальный выход продукта. Состояние клеточных суспензий характе­ризуется плотностью клеточной популяции. За 14 —16 дней (сред­няя длительность пассажа) плотность обычно повышается от 5-104 до 5-106 кл/мл. Качество суспензии определяется степенью агреги­рованное™. Агрегаты должны содержать не более 10 — 12 клеток.

Большой интерес представляет культура одиночных клеток. Ее применяют в клеточной селекции для отбора гибридных клеток и их клонирования, а также для генетических и физиологических исследований. Например, вопрос о причинах генетической неод­нородности легче решать, используя клон-потомство одной клет­ки, а не гетерогенную ткань исходного экспланта.

Однако культивирование одной или нескольких клеток связа­но с определенными трудностями, состоящими в том, что оди­ночная клетка живет, но не делится в тех условиях, которые раз­работаны для нормального роста и размножения клеток каллус - ной ткани. Поэтому при культивировании одиночных клеток по­требовалась выработка специальных методов. Все они основаны на использовании так называемого «кондиционирующего факто­ра» — метаболитов, выделяемых в среду делящимися клетками. Когда на питательную среду высаживается одна клетка или не­большое их количество, они не делятся, так как выделяемого кон­диционирующего фактора не хватает для индукции деления. Сле­довательно, необходимо повысить концентрацию фактора в пи­тательной среде. Этой цели служат следующие методы:


1. Метод ткани-«няньки» — кондиционирующий фактор выде­ляется находящимися рядом с одиночной клеткой кусочками тка- ни-«няньки» (рис. 6.1).

2. Метод «кормящего слоя» — кондиционирующий фактор вы­деляют активно делящиеся клетки суспензионной культуры того же вида растений, что и одиночная клетка (рис. 6.2).

3. Кондиционирование среды — осуществляется путем добав­ления в нее питательной среды, отфильтрованной от интенсивно делящихся клеток.

4. Метод культивирования одиночных клеток — осуществляется в микрокапле, т.е. в очень малом объеме (=20 мкл) богатой пита­тельной среды (Ю.Ю.Глеба).

Рис. 6.1. Выращивание отдельных клеток с помощью ткани-«няньки» (по Р. Г. Бу- тенко, 1999): 1 — одиночные клетки; 2 — каллусная куль- тура-«нянька»

Точно сказать, что представляет собой кондиционирующий фактор, пока невозможно. Согласно исследованиям А.И.Павло­вой и Р. Г. Бутенко (1969), этот фактор водорастворим, термоста­билен, не заменяется фитогормонами, включает низкомолекуляр­ные вещества. Химическая природа кондиционирующего фактора доказывается с помощью довольно простого эксперимента. Если


 

 


-2 Рис. 6.2. Использование культуры сус- _ j пензионных клеток в качестве «кор*
5 ных клеток кукурузы (By Дык Куанг^
3. Б. Шамина, 1985): / — колонии клеток; 2 — фильтровал ная бумага; 3 — алюминиевая сетка; 4 пенополиуретан; 5 — суспензия клет

мящего слоя» для выращивания изо-i лированных протопластов и одиноч-*


Рис. 6.3. Доказательство химической природы фактора кондициониро­вания: / — одиночные клетки; 2 — ткань-«нянька»; 3 — делящиеся клетки; 4 — целло­фан; 5— стеклянные пластинки

 

разделить одиночные клетки и ткань-«няньку» стеклянной плас­тиной, то деления клеток не наступает. Если вместо пластин по­местить целлофан, то хотя и с задержкой начинается деление оди­ночных клеток (рис. 6.3).

6.5. ОБЩАЯ ХАРАКТЕРИСТИКА КАЛЛУСНЫХ КЛЕТОК

Каллусная клетка имеет свой цикл развития, аналогичный циклу всех других клеток: деление, растяжение, дифференциров- ку, старение и отмирание. Дифференцировку каллусных клеток принято называть вторичной. Однако ее не следует путать с вто­ричной дифференцировкой, на которой основан морфогенез. Рост каллусных тканей подчиняется общим закономерностям. Кривая роста каллусных тканей также имеет характер ^-образной кривой (ростовая кривая Сакса) и включает пять фаз, длительность кото­рых неодинакова у разных видов растений (рис. 6.4).


Первая фаза — латентная, или лаг-фаза, заключается в подготов­ке клеток к делениям. Вторая — фаза экспоненциального роста (лога­рифмическая). В это время митотическая активность наибольшая,
рост идет с ускорением, масса каллуса увеличивается. Третья фаза — линейная, характеризу­ется постоянной скоростью ро­ста каллусной массы. Четвертая — фаза замедленного роста, во вре­мя которой интенсивность деле­ния клеток резко снижается. Во время пятой фазы — стационар­ной — масса каллуса не увели­чивается, так как начавшееся от­мирание клеток еще компенси­руется за счет их деления. Далее следует отмирание каллуса.

Культивируемые каллусные клетки и ткани сохраняют мно­гие физиологические особенно­сти, свойственные клеткам рас­тения, из которого они были по­лучены. Сохраняются, например, такие свойства, как морозостойкость, устойчивость к абиотическим факторам (температура, засоление, фотопериодическая реакция), а главное, хотя и в разной степени, способность к синтезу вторичных метаболитов. Наряду с общими у каллусных клеток появляются свои, характерные только для них особенности. Например, длительно куль­тивируемые in vitro клетки высших растений, как каллусные, так и суспензионные, образуют специфическую популяцию, относящую­ся к типу неполовых, — популяцию соматических клеток. Наиболее характерные свойства этой популяции — физиологическая асин- хронность и генетическая гетерогенность.

Физиологическая асинхронностъ — наиболее важное свойство не-: половой популяции. Оно заключается в том, что в каждый дан-! ный момент времени клетки находятся в разных фазах роста: однц делятся, другие растут, а третьи уже стареют. Поэтому общее фи­зиологическое состояние такой популяции принято оценивать по состоянию большинства клеток. )

Причины возникающей асинхронности весьма разнообразны!?

1. Особенности вида, сорта, генотипа индивидуального растер ния, а также особенности экспланта. |

2. Стрессы культивирования, например неоптимальная для дан^ ного вида клеток среда. |

3. Изменение баланса эндогенных гормонов и концентрации | среде экзогенных гормонов в течение выращивания. |

4. Генетическая гетерогенность клеток и клонов. |

5. Аномалия митотического цикла клеток in vitro. |

6. Физические факторы (температура, свет, аэрация). |

170 '!

Время культивирования Рис. 6.4. Ростовая кривая при пери­одическом выращивании каллусных тканей: Фазы роста: 1 — латентная; 2 — логариф­мическая; 3 — линейная; 4 — замедлен­ного роста; 5 — стационарного роста

sj

Асинхронность — устойчивое свойство популяции каллусных клеток. Если с помощью специфических воздействий синхрони­зировать пролиферацию клеток популяции, то уже через 3—4 де­ления она вновь становится асинхронной.

Генетическая гетерогенность — свойство клеток соматической популяции (нестабильность генома и их генетическая гетероген­ность). Генетически стабильными считаются только клетки меристематических тканей. В клетках остальных тканей при куль­тивировании могут возникать полиплоидия, анеуплоидия, хро­мосомные аберрации, генные мутации. Однако генетическую ге­терогенность нельзя рассматривать как недостаток, так как она является необходимым условием существования популяции кле­ток и служит основой для их адаптации.

В качестве причин появления генетической гетерогенности можно назвать следующие:

1. Генетическая гетерогенность исходного материала. В растени­ях клетки характеризуются различной плоидностью, диплоидны только активно делящиеся меристематические клетки.

2. Нарушение коррелятивных связей при выделении первично­го экспланта из растения.

3. Действие компонентов среды. Экзогенные гормоны и стиму­ляторы могут оказывать мутагенное действие. Ауксины, особенно 2,4-D, входящие в состав питательных сред, — мутагены; цитоки- нины способствуют полиплоидизации клеток.

4. Длительное субкультивирование, при котором накапливают­ся генетически измененные каллусные клетки.

После 5 — 6 пересадок новый кариотип клеточной популяции, как правило, стабилизируется, если условия культивирования остаются постоянными. В противном случае изменение физичес­ких или трофических факторов приведет к новым генетическим изменениям.

Генетическая нестабильность каллусных клеток имеет большое значение для селекционной работы, так как позволяет отбирать штаммы клеток с измененным генотипом. Эти клетки могут обла­дать уникальными свойствами: повышенной устойчивостью к неблагоприятным факторам, повышенной продуктивностью и т.д. Однако генетическая гетерогенность популяций каллусных кле­ток в культуре не влияет на сохранение в их геноме основных качеств вида и растения-донора.

Гормоннезависимость. Хотя гормоны и вызывают мутации, кал­лусные ткани от большинства растений образуются только в при­сутствии в питательной среде и ауксинов, и цитокининов. Ис­ключение составляют, например, незрелые зародыши пшеницы и семядоли подсолнечника. Первые образуют каллусную ткань на питательной среде с 2,4-D, но без цитокининов. Вторые, на­против, — на среде, содержащей цитокинины, но без ауксинов.

Вероятно, такая специфика связана с эндогенным содержанием фитогормонов и с компетентностью клеток. Однако при длитель­ном культивировании практически у всех тканей может возникать специфическое свойство гормоннезависимости, т.е. автономности по отношению к ауксинам и цитокининам. Эти ткани могут расти на среде без гормонов, что делает их похожими на опухолевые клетки и резко отличает от нормальных каллусных тканей. Внешне же та­кие гормоннезависимые ткани ничем не отличаются от каллусных.

Клетки, которые в процессе культивирования приобрели свой­ство автономности от присутствия в среде гормонов, называются «привыкшими». Ткани, образованные такими «привыкшими» клет­ками, называют «химическими опухолями» в отличие от расти­тельных или генетических опухолей. Генетические опухоли возника­ют на межвидовых гибридах растений. Растительные опухоли име­ют бактериальное или вирусное происхождение. Чаще всего расти­тельные опухоли возникают при попадании в растения агробакте- рий. Так, Agrobacterium tumefaciens вызывает образование коронча­тых галлов, A. rhizodenes — бородатого корня, A. rubi — стеблевого галла. Превращение растительных клеток в опухолевые связано с проникновением в них ДНК бактериальной клетки, так называе­мой Ti-плазмиды, которая значительно изменяет свойства клет­ки, в том числе экспрессирует гены, контролирующие синтез аук­синов и цитокининов. Гормоннезависимость «привыкших» клеток связана с изменением активности собственных генов, ответствен­ных за синтез белков-ферментов, участвующих в синтезе гормо­нов. Таким образом, «привыкшим» тканям и растительным опу­холям в равной степени свойственна гормоннезависимость, но у растительных опухолей она носит генетический характер. У «при­выкших» клеток это свойство достигается главным образом за счет эпигеномных изменений. Существует еще одна особенность, по­зволяющая отличить «привыкшие» и опухолевые клетки от обыч­ных каллусных. Обычно ни опухолевые, ни «привыкшие» ткани не способны к нормальной регенерации. Они могут образовывать уродливые органоподобные структуры, так называемые тератомы. В отдельных случаях у длительно культивируемых тканей удается отодвинуть порог «привыкания» благодаря изменению состава питательных сред и добиться регенерации нормального растения.








Дата добавления: 2016-02-09; просмотров: 1748;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.