Основные достоинства и недостатки метода имитационного моделирования
Имитационное моделирование (ситуационное моделирование) — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.
Имитационные модели принято классифицировать по четырем наиболее распространенным признакам:
1) типу используемой ЭВМ;
2) способу взаимодействия с пользователем;
3) способу управления системным временем (механизму системного времени);
4) способу организации квазипараллелизма (схеме форма-лизации моделируемой системы).
Имитационная модель — это компьютерная программа, описывающая конструкцию и воссоздающая поведение реальной системы на протяжении какого-то времени. Она даёт возможность получить детальную Имитационная модель позволяет получать подробную статистику о разных сторонах работы системы, что обусловлено различными входными данными.
Применение имитационных моделей дает множество преимуществ:
Стоимость. Например, сокращение числа рабочих мест в некой организации может привести к снижению качества обслуживания, а затем и к потере клиентов. Чтобы принять верное решение в подобной ситуации можно применить имитационное моделирование, что позволило бы спрогнозировать результаты каких-либо действий в компании. При этом затратами будут являться только стоимости программного обеспечения и некоторых специальных услуг.
Время. В реальном времени эффективность использования какого-либо оборудования или открытие, например, каких-нибудь новых дочерних предприятий может занять очень много времени (месяцы, годы). Имитационная модель же способна вывести наиболее вероятный исход таких действий за несколько минут (возможно, часов).
Повторяемость. В настоящее время организации различных типов должны очень быстро реагировать на всяческие, даже незначительные изменения на рынке. От этого может зависеть их дальнейшее развитие, а может даже и существование в принципе. Например, спрос на какую-либо продукцию. Организация может вложить слишком много средств в продукт, который затем никто не будет покупать. Это может привести к разорению фирмы. Имитационная модель, несомненно, может помочь избежать этого путём проведения огромного количества экспериментов с различными параметрами, чтобы выяснить, что лучше сделать, чтобы избежать неблагоприятных моментов и принять верное решение.
Точность. Имитационное моделирование даёт возможность изобразить конструкцию системы и её процессы в непосредственном виде, избегая применения форму и математических зависимостей.
Наглядность. Она способна визуализировать процессы работы системы, схематично изобразить её структуру и преподнести в графическом виде результаты. С помощью таких возможностей гораздо проще показать полученный вариант решения какой-нибудь задачи и разъяснить его клиенту или коллегам.
Универсальность. С помощью имитационного моделирования можно справиться задачами их разных сфер производства, финансов, здравоохранения и прочих. В каждой ситуации модель имитирует, воссоздает реальную жизнь и даёт возможность осуществлять неограниченно много экспериментов без воздействия на реальные объекты.
Имитационное моделирование имеет ряд недостатков:
Даже если не обращать внимания на то, что на создание имитационной модели может потребоваться много времени и сил, никто не может гарантировать, что полученная модель даст ответы на все вопросы.
Не существует никакого метода для доказательства того, что модель работает точно так же как и реальная модель. Моделирование, можно сказать, основано на многократных повторениях последовательностей, которые в свою очередь основаны на генерации случайных чисел, воссоздающих наступление разных ситуаций. Стабильно работающая система при соединении неудачных событий может выйти из-под контроля.
Создание моделей может занять от часа до нескольких лет: всё зависит от того, какую систему мы хотим промоделировать.
Моделирование не может с такой точностью как математический анализ воссоздать систему, так как оно основано на генерации случайных чисел. Если есть возможность представить систему с помощью математической модели, то лучше сделать так.
Сложная модель может потребовать много компьютерного времени для проведения «прогонов».
Недостатком имитационного моделирования до сих пор является то, что нет каких-то определённых стандартов. Поэтому может получиться так, что если одну и ту же реальную модель воссоздают разные аналитики, то результатом могут оказаться абсолютно разные модели.
46. Основные составляющие имитационной модели: компоненты, параметры, переменные, функциональные зависимости, ограничения, целевые функции.
Имитационное моделирование предполагает работу с такими математическими моделями, с помощью которых результат исследуемой операции нельзя заранее вычислить или предсказать, поэтому необходим эксперимент (имитация) на модели при заданных исходных данных. В свою очередь, сущность машинной имитации заключается в реализации численного метода проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложной системы в течение заданного или формируемого периода времени.
Каждая имитационная модель представляет собой комбинацию шести основных составляющих:
• компонентов;
• переменных;
• параметров;
• функциональных зависимостей;
• ограничений;
• целевых функций.
Под компонентами понимают составные части, которые при соответствующем объединении образуют систему. Компоненты называют также элементами системы или ее подсистемами. Например, в модели рынка ценных бумаг компонентами могут выступать отделы коммерческого банка (кредитный, операционный и т.д.), ценные бумаги и их виды, доходы, котировки и т.п.
Параметры— это величины, которые исследователь (пользователь модели) может выбирать произвольно, т.е. управлять ими.
Различают экзогенные (являющиеся для модели входными и порождаемые вне системы) и эндогенные (возникающие в системе в результате воздействия внутренних причин). Эндогенные переменные иногда называют переменными состояния.
Функциональные зависимости описывают поведение параметров и переменных в пределах компонента или же выражают соотношения между компонентами системы. Эти соотношения могут быть либо детерминированными, либо стохастическими.
Ограничения — устанавливаемые пределы изменения значений переменных или ограничивающие условия их изменения. Они могут вводиться разработчиком (и тогда их называют искусственными) или определяться самой системой вследствие присущих ей свойств (естественные ограничения).
Целевая функция предназначена для измерения степени достижения системой желаемой (требуемой) цели и вынесения оценочного суждения по результатам моделирования. Эту функцию также называют функцией критерия. По сути, весь машинный эксперимент с имитационной моделью заключается в поиске таких стратегий управления системой, которые удовлетворяли бы одной из трех концепций ее рационального поведения: оптимизации, пригодности или адаптивизации. Если показатель эффективности системы является скалярным, проблем с формированием критерия не возникает и, как правило, решается оптимизационная задача поиска стратегии, соответствующей максимуму или минимуму показателя. Сложнее дело обстоит, если приходится использовать векторный показатель. В этом случае для вынесения оценочного суждения используются методы принятия решений по векторному показателю в условиях определенности (когда в модели учитываются только детерминированные факторы) или неопределенности (в противном случае).
Дата добавления: 2016-02-02; просмотров: 4298;