В моделях с автокоррелированными остатками

Реализация метода построения регрессионных моделей с автокоррелированными остатками возможна в ситуации, когда параметр является известной величиной.В практике такие ситуации встречаются крайне редко. Поэтому возникает необходимость в процедурах построения таких моделей, когда неизвестно. Опишем несколько таких процедур.

Расчет с использованием статистики Дарбина – Уотсона. Известно, что статистику Дарбина – Уотсона можно представить в виде

.

Из этого соотношения легко получить оценку параметра , приняв за нее автокорреляцию

. (3.119)

Такой метод оценивания рекомендуют применять при достаточно большом числе наблюдений.

Метод Кохрейне – Оркатта. Метод представляет собой итерационную процедуру из нескольких шагов:

1. С помощью обычного МНК строится регрессионная модель и рассчитывается вектор остатков .

 

2. По полученным остаткам строится авторегрессионное уравнение , оценка параметра которого принимается за искомый параметр.

3. С помощью найденного значения осуществляется преобразование исходных данных, и находятся МНК-оценки регрессионной модели;

4. Рассчитывается новый вектор остатков ;

5. Процедура повторяется, начиная со второго шага.

Процедура заканчивается, когда очередное приближение мало отличается от предыдущего.

Метод Кохре йна – Оркатта предусмотрен большинством современных компьютерных пакетов.

Метод Хилдрета – Лу. Этот метод основан на подборе параметра из интервала его возможных значений (-1; 1). Подбор осуществляется следующим образом. Последовательно для каждого значения параметра , определяемого с некоторым шагом (например, 0,1 или 0,05), исходные данные преобразуются по формулам (3.109), (3.110) и рассчитываются МНК-оценки. В качестве финального выбирается то значение параметра , при котором сумма квадратов отклонений минимальна. Для нахождения уточненного значения в окрестности полученного таким образом параметра, устраивается более мелкая сетка, и процесс повторяется.

Метод Дарбина. Для реализации этого метода уравнение линейной регрессии записывается в виде

. (3.120)

Смысл записанного таким образом уравнения в том, что включается в число регрессоров, а – число оцениваемых параметров.

Введем обозначения и и перепишем (3.120) следующим образом:

. (3.121)

Оценив параметры и уравнения (3.121) с помощью обычного МНК, можем получить оценки исходного уравнения регрессии в виде

; . (3.122)

В этом методе первое наблюдение исключается из расчетов, так как (3.120) записывается для .

 








Дата добавления: 2016-01-29; просмотров: 1091;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.