Общая схема МНК в случае автокорреляции первого порядка
Чаще других при построении прогнозных моделей регрессии используются данные, представляющие собой временные ряды. В случае временных рядов нарушение условия 3b) состоит в том, что случайные остатки коррелируют между собой и, следовательно, матрица
становится недиагональной. Поэтому рассмотренный выше метод взвешенных наименьших квадратов к данной ситуации не применим, т.е. возникает необходимость в применении другого варианта обобщенной схемы МНК, отличного от случая гетероскедастичности. Начнем с рассмотрения простейшего случая, когда зависимость между остатками
, выражается автокорреляцией первого порядка, т.е.
, (3.92)
где
, а
– случайная величина, удовлетворяющая условиям классической регрессии
,
. (3.93)
Кроме того, будем считать, что соотношение (3.92) справедливо для любого t (
).
Учитывая свойства случайной составляющей
, описываемые соотношениями (4.93), вычислим основные ее числовые характеристики
и
. Для этого представим случайную величину
в виде бесконечного ряда


. (3.94)
Используя полученное представление и свойство (3.93), получаем
, (3.95)


. (3.96)
При вычислении дисперсии было учтено, что
между собой независимы и поэтому математические ожидания произведений
при
равны 0.
Чтобы вычислить ковариационную матрицу, вычислим произведение
при произвольном
. Для этого предварительно первый сомножитель представим в виде двух слагаемых.

. (3.97)
Произведение первого слагаемого и второго сомножителя равно 0 в силу того, что
, т.е.
. (3.98)
Таким образом, если снова учесть, что
независимы, то ковариация между
и
будет равна

, (3.99)
где дисперсия определяется соотношением (3.96).
Мы получили представление о структуре ковариационной матрицы случайной составляющей модели с автокоррелированными остатками. Выражение (3.96) задает ее диагональные элементы, а (3.98) – внедиагональные элементы ковариационной матрицы.
Обобщая проведенные исследования, можно записать условия, в которых строится регрессионная модель с автокоррелированными остатками:
1. Спецификация
.
2.
– детерминированная матрица
с рангом
.
3а.
. 3b.
.
Для удобства изложения материала введем обозначение
. (3.100)
Матрица
симметрична и положительно определена (
,
-произвольный ненулевой вектор). Так как по определению коэффициент корреляции между остатками равен
, (3.101)
то можно сделать вывод о том, что в линейной модели с автокоррелированными остатками в такой математической форме реализована идея ослабления корреляционной связи между регрессионными остатками по мере их взаимного удаления во времени.
Так как в дальнейшем потребуется
, то приведем ее общий вид
. (3.102)
Зная обратную матрицу (3.102), можно записать, используя схему обобщенного МНК, формулу для вычисления оптимальных оценок в классе несмещенных в следующем виде:
. (3.103)
Так как по условию
симметрична и положительно определена, то и
также симметрична и положительно определена. Следовательно, ее можно представить как
, (3.104)
где
– диагональная матрица, на главной диагонали которой стоят собственные значения
матрицы
, а
– ортогональная матрица, столбцы которой
представляют собой собственные вектора
, т.е.
.
Поскольку
положительно определенная матрица, ее собственные числа
положительные и, следовательно, можно определить дробную степень
в виде
, (3.105)
где
– диагональная матрица с элементами
по главной диагонали.
Введение дробной степени позволяет представить матрицу
в виде произведения двух матриц
. (3.106)
Такое представление позволяет записать формулу обобщенного МНК в виде:
, (3.107)
где
,
.
Для рассматриваемого случая матрица
может быть записана следующим образом:
. (3.108)
Преобразование данных с помощью этой матрицы приводит к следующим результатам:
; (3.109)
. (3.110)
Таким образом, если известно, что между остатками наблюдается автокорреляция и известен параметр
, то после преобразования данных в соответствии с (3.109), (3.110) для оценки параметров регрессии можно применить обычный МНК, который, по сути, является частным случаем обобщенной схемы МНК.
Следовательно, чтобы принять решение о методе построения регрессионного уравнения по данным временных рядов, необходимо сначала установить наличие автокорреляции в остатках, а затем получить оценку параметра
.
Дата добавления: 2016-01-29; просмотров: 1128;
