Недостатки неразрушающих методов контроля
1. Испытания обычно включают в себя косвенные измерения свойств, не имеющих непосредственного значения при эксплуатации. Связь между этими измерениями и эксплуатационной надежностью должна быть доказана другими способами.
2. Испытания обычно качественные и редко – количественные. Обычно они не дают возможности измерения разрушающих нагрузок и срока службы до разрушения даже косвенно. Они могут, однако, обнаружить дефект или проследить процесс разрушения.
3. Обычно требуются исследования на специальных образцах и исследование рабочих условий для интерпретации результатов испытания. Там, где соответствующая связь не была доказана, и в случаях, когда возможности методики ограничены, наблюдатели могут не согласиться в оценке результатов испытаний.
3. МЕТОДЫ ИСПЫТАНИЙ
3.1. Химические методы исследования
Химические методы анализа широко используют для анализа руд, горных пород, минералов и других материалов при определении в них компонентов с содержанием от десятых долей до нескольких десятков процента. Химические методы анализа характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента).
ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — совокупность методов качественных и количественных анализов веществ, основанных на применении химических реакций.
Качественные химические методы анализа включают использование реакций обнаружения, характерных для неорганических ионов в растворах и для функциональных групп органических соединений. Эти реакции обычно сопровождаются изменением окраски раствора, образованием осадков или выделением газообразных продуктов.
В зависимости от количества анализируемого вещества различают макроанализ (1 - 0,1 г), полумикроанализ (0,1 - 0,01 г), микроанализ (0,01 - 0,001 г) и ультрамикрохимический (0,0001 г) анализ (см. микрохимический анализ).
В качественном анализе наибольшее значение имеют инфракрасная спектроскопия и ядерный магнитный резонанс. Используют также химические методы и методы, основанные на измерении таких физических характеристик вещества, как, например, плотность, растворимость, температуры плавления и кипения. Для фазового качественного анализа применяются рентгеновский структурный анализ и термогравиметрия. Часто фазы сначала выделяют химическим и электрохимическим растворением. Основной метод изотопного качественного анализа — масс-спектрометрия.
Инфракрасная спектроскопия (колебательная спектроскопия, средняя инфракрасная спектроскопия, ИК-спектроскопия, ИКС) — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами.
При пропускании инфракрасного излучения через вещество происходит возбуждение колебательных движений молекул или их отдельных фрагментов. При этом наблюдается ослабление интенсивности света, прошедшего через образец. Однако поглощение происходит не во всём спектре падающего излучения, а лишь при тех длинах волн, энергия которых соответствует энергиям возбуждения колебаний в изучаемых молекулах. Следовательно, длины волн (или частоты), при которых наблюдается максимальное поглощение ИК-излучения, могут свидетельствовать о наличии в молекулах образца тех или иных функциональных групп и других фрагментов, что широко используется в различных областях химии для установления структуры соединений.
Ядерный магнитный резонанс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.
Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.
Рентгеноструктурный анализ (рентгенодифракционный анализ) — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке.
Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, её размеры и форму, а также определить группу симметрии кристалла.
Рентгеноструктурный анализ и по сей день является самым распространённым методом определения структуры вещества в силу его простоты и относительной дешевизны.
Термогравиметрия - метод термического анализа, при котором регистрируется изменение массы образца в зависимости от температуры.
Экспериментально получаемая кривая зависимости изменения массы от температуры (называемая термогравиметрической кривой или термограммой) позволяет судить о термостабильности и составе образца в начальном состоянии, о термостабильности и составе веществ, образующихся на промежуточных стадиях процесса и о составе остатка, если таковой имеется. Этот метод является эффективным в том случае, когда образец выделяет летучие вещества в результате различных физических и химических процессов.
Масс-спектрометрия — метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся при ионизации представляющих интерес компонентов пробы.
Почти все масс-спектрометры — это вакуумные приборы, поскольку ионы очень нестабильны в присутствии посторонних молекул. Однако существуют некоторые приборы, которые можно условно отнести к масс-спектрометрам, но в которых используется не вакуум, а поток особого чистого газа.
Масс-спектр — это зависимость интенсивности ионного тока (количества вещества) от отношения массы к заряду (природы вещества). Поскольку масса любой молекулы складывается из масс составляющих её атомов, масс-спектр всегда дискретен, хотя при низком разрешении масс-спектрометра пики разных масс могут перекрываться или даже сливаться. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут влиять на масс-спектр. Так, ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным.
К количественным химическим методам анализа относят гравиметрический анализ, титриметрический анализ с визуальной индикацией конечной точки титрования, седиментационный анализ и газоволюмометрию.
Гравиметрический анализ (весовой анализ) — важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Гравиметрический анализ сыграл большую роль при становлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов), при установлении качества сырья и готовой продукции и т. д.
Титриметрический анализ (титрование) – метод количественного или массового анализа, который часто используется в аналитической химии, основанный на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом. Титрование — процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (не следует путать с точкой эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.
Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия.
Газоволюмометрия (газовый объёмный анализ) основана на избирательной абсорбции составных частей газовой смеси в сосудах, заполненных тем или иным поглотителем, с последующим измерением уменьшения объёма газа с помощью бюретки.
Химические методы анализа широко используют для анализа руд, горных пород, минералов и других материалов при определении в них компонентов с содержанием от десятых долей до нескольких десятков процента. Химические методы анализа характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента). Однако эти методы постепенно вытесняются более экспрессными физико-химическими и физическими методами анализа.
3.2. Физические методы испытаний
Исследования металлов проводятся с целью, определения физических свойств, изучения внутреннего строения металлов, их механических свойств, оценки технологических свойств.
Физические свойства (плотность, теплопроводность, электрические, магнитные, оптические и др.) определяют обычными физическими методами. Исследование физических свойств служит основой изучения внутреннего строения металлов и сплавов, так как фазовый состав и происходящие превращения одной фазы в другую четко отражаются на физических свойствах металлов. Изучая физические свойства, можно судить о происходящих в металле превращениях.
Оценка технологических свойств производится с помощью специальных технологических проб, которые разрабатываются для решения узкой технологической задачи. При этом из-за большой сложности изучаемого явления приходится пользоваться измерениями с невысокой точностью.
Примером подобных проб могут служить пробы на отбел чугунов, на прокаливаемость сталей, на жидкотекучесть расплавленного металла, на осаживание и др. Ниже более подробно будет описана технологическая проба на излом, очень широко используемая при оценке особенностей структуры металлов.
Исследования структуры металлов и сплавов, их фазового состава и его изменений под действием температуры и вводимых добавок, исследование механических свойств металлов и сплавов осуществляются с помощью большого числа разнообразных методов анализа, из которых здесь будут рассмотрены лишь наиболее употребительные.
К основным физическим методам исследования относятся:
1. Термический анализ основан на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Данный метод позволяет определить критические точки.
2. Дилатометрический метод.
При нагреве металлов и сплавов происходит изменение объема и линейных размеров – тепловое расширение. Если изменения обусловлены только увеличением энергии колебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров – необратимы.
Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.
3. Магнитный анализ.
Используется для исследования процессов, связанных с переходом из паромагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов.
3.3. Физико-химические методы испытаний
Общее число физико-химических методов довольно велико, оно составляет несколько десятков. Наибольшее практическое значение среди них имеют следующие методы:
1) электрохимические - основаны на измерении электрической проводимости, потенциалов, силы тока и других электрохимических или электрофизических параметров анализируемой системы;
2) спектральные - основаны на измерении различных эффектов взаимодействия вещества с электромагнитным излучением и какого-либо спектрального параметра (длины волны, частоты колебаний, энергии). Эта группа методов является наиболее обширной и важной по практическому значению;
3) хроматографические (разделения и анализа) - основаны на процессах адсорбции (абсорбции) и десорбции определяемого вещества. Широко используются и незаменимы при разделении близких по свойствам компонентов сложных смесей (аминокислот, моносахаридов, жирных кислот и др.). Аналитическим параметром в данном случае является положение хроматографического пика на хроматограмме.
Параметр, который измеряют инструментально и по которому в дальнейшем проводят анализ, называется аналитическим сигналом; это качественная характеристика метода. Количественной характеристикой является интенсивность аналитического сигнала.
4. РАЗРУШАЮЩИЕ МЕТОДЫ ИСПЫТАНИЙ
4.1. Разрушение металлов
Процесс деформации при достижении высоких напряжений завершается разрушением. Тела разрушаются по сечению не одновременно, а вследствие развития трещин. Разрушение включает три стадии: зарождение трещины, ее распространение через сечение, окончательное разрушение.
Различают хрупкое разрушение – отрыв одних слоев атомов от других под действием нормальных растягивающих напряжений. Отрыв не сопровождается предварительной деформацией. Механизм зарождения трещины одинаков - благодаря скоплению движущихся дислокаций перед препятствием (границы субзерен, фазовые границы), что приводит к концентрации напряжений, достаточной для образования трещины. Когда напряжения достигают определенного значения, размер трещины становится критическим и дальнейший рост осуществляется произвольно.
Для хрупкого разрушения характерна острая, часто ветвящаяся трещина. Величина зоны пластической деформации в устье трещины мала. Скорость распространения хрупкой трещины велика - близка к скорости звука (внезапное, катастрофическое разрушение). Энергоемкость хрупкого разрушения мала, а работа распространения трещины близка к нулю.
Различают транскристаллитное разрушение – трещина распространяется по телу зерна, интеркристаллитное – по границам зерен (всегда хрупкое).
Результатом хрупкого разрушения является блестящий светлый кристаллический излом с ручьистым строением. Хрупкая трещина распространяется по нескольким параллельным плоскостям. Плоскость излома перпендикулярна нормальным напряжениям.
Вязкое разрушение – путем среза под действием касательных напряжений. Ему всегда предшествует значительная пластическая деформация.
Трещина тупая раскрывающаяся. Величина пластической зоны впереди трещины велика. Малая скорость распространения трещины. Энергоемкость значительная, энергия расходуется на образование поверхностей раздела и на пластическую деформацию. Большая работа затрачивается на распространение трещины. Поверхность излома негладкая, рассеивает световые лучи, матовая (волокнистый) излом. Плоскость излома располагается под углом. По излому можно определить характер разрушения.
4.2. Физические, химические, механические, технологические и эксплуатационные свойства
Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.
Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий — серебристо-белый.
Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.
Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С. и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).
Тепловые свойства. Теплоёмкость металлов обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в металлах очень велика и не зависит от температуры, электронная теплоёмкость мала и у большинства металлов наблюдается только при температурах в несколько градусов кельвина. Теплопроводность металлов осуществляется главным образом электронами проводимости.
Теплопроводностью называют, способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро. медь, алюминий обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей тeплопpoводностью. В единицах СИ теплопроводность имеет размерность Вт/ (м·К).
Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения б = (l2 –l1) [l1 (t2 – t1)], где l1 и l2 длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3σ. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.
Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости — количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ — Дж/(кг.К).
Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками — электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность — в См/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токоведущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением — увеличивается.
Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.
Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.
Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.
Сопротивление металлов коррозии, окалине (образованию и растворению) определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.
Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.
Механические свойства. Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо, прежде всего, учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.
Напряжение — величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца. Деформация – изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза (рис. 4.1). В действительности материал может подвергаться одному или нескольким видам деформации одновременно.
Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение (ГОСТ 1497—73).
Рис. 4.1 Виды деформаций: а — сжатие, б — растяжение,
в — кручение, г — срез, д - изгиб
Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 4.2). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат — нагрузки, приложенные к образцу.
Механические свойства и способы определения их количественных характеристик
Основными механическими свойствами являются прочность, упругость, вязкость, твердость. Зная механические свойства, конструктор обоснованно выбирает соответствующий материал, обеспечивающий надежность и долговечность конструкций при их минимальной массе.
Механические свойства определяют поведение материала при деформации и разрушении от действия внешних нагрузок.
В зависимости от условий нагружения механические свойства могут определяться при:
1. статическом нагружении – нагрузка на образец возрастает медленно и плавно.
2. динамическом нагружении – нагрузка возрастает с большой скоростью, имеет ударный характер.
3. повторно, переменном или циклическим нагружении – нагрузка в процессе испытания многократно изменяется по величине или по величине и направлению.
Для получения сопоставимых результатов образцы и методика проведения механических испытаний регламентированы ГОСТами.
При статическом испытании на растяжение: ГОСТ 1497 - 84 получают характеристики прочности и пластичности.
Прочность – способность материала сопротивляться деформациям и разрушению.
Испытания проводятся на специальных машинах, которые записывают диаграмму растяжения, выражающую зависимость удлинения образца (мм) от действующей нагрузки Р, т.е. .
Но для получения данных по механическим свойствам перестраивают: зависимость относительного удлинения от напряжения
Рис. 4.2. Диаграмма растяжения: а – абсолютная, б – относительная;
в – схема определения условного предела текучести
Проанализируем процессы, которые происходят в материале образца при увеличении нагрузки.
Участок оа на диаграмме соответствует упругой деформации материала, когда соблюдается закон Гука. Напряжение, соответствующее упругой предельной деформации в точке а, называется пределом пропорциональности.
Предел пропорциональности ( ) – максимальное напряжение, до которого сохраняется линейная зависимость между деформацией и напряжением.
, (4.1)
При напряжениях выше предела пропорциональности происходит равномерная пластическая деформация (удлинение или сужение сечения).
Каждому напряжению соответствует остаточное удлинение, которое получаем проведением из соответствующей точки диаграммы растяжения линии параллельной оа.
Так как практически невозможно установить точку перехода в неупругое состояние, то устанавливают условный предел упругости, – максимальное напряжение, до которого образец получает только упругую деформацию. Считают напряжение, при котором остаточная деформация очень мала (0,005…0,05%).
В обозначении указывается значение остаточной деформации .
, (4.2)
Предел текучести характеризует сопротивление материала небольшим пластическим деформациям.
В зависимости от природы материала используют физический или условный предел текучести.
Физический предел текучести – это напряжение, при котором происходит увеличение деформации при постоянной нагрузке (наличие горизонтальной площадки на диаграмме растяжения). Используется для очень пластичных материалов.
, (4.3)
Но основная часть металлов и сплавов не имеет площадки текучести.
Условный предел текучести – это напряжение вызывающее остаточную деформацию
, (4.4)
Физический или условный предел текучести являются важными расчетными характеристиками материала. Действующие в детали напряжения должны быть ниже предела текучести.
Равномерная по всему объему пластичная деформация продолжается до значения предела прочности.
В точке в в наиболее слабом месте начинает образовываться шейка – сильное местное утомление образца.
Предел прочности – напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения (временное сопротивление разрыву).
, (4.5)
Образование шейки характерно для пластичных материалов, которые имеют диаграмму растяжения с максимумом.
Предел прочности характеризует прочность как сопротивления значительной равномерной пластичной деформации. За точкой В, вследствие развития шейки, нагрузка падает и в точке С происходит разрушение.
Истинное сопротивление разрушению – это максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца (рис. 4.3).
(4.6)
где - конечная площадь поперечного сечения образца.
Истинное сопротивление разрушению значительно больше предела прочности, так как оно определяется относительно конечной площади поперечного сечения образца.
Рис. 4.3. Истинная диаграмма растяжения
Истинные напряжения определяют как отношение нагрузки к площади поперечного сечения в данный момент времени.
(4.7)
При испытании на растяжение определяются и характеристики пластичности.
Пластичность –способность материала к пластической деформации, т.е. способность получать остаточное изменение формы и размеров без нарушения сплошности.
Это свойство используют при обработке металлов давлением.
Характеристики:
· относительное удлинения :
(4.8)
где и – начальная и конечная длина образца.
– абсолютное удлинение образца, определяется измерением образца после разрыва.
· относительное сужение:
(4.9)
где - начальная площадь поперечного сечения
-площадь поперечного сечения в шейке после разрыва.
Относительное сужение более точно характеризует пластичность и служит технологической характеристикой при листовой штамповке.
Пластичные материалы более надежны в работе, т.к. для них меньше вероятность опасного хрупкого разрушения.
Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.
Широкое распространение объясняется тем, что не требуются специальные образцы.
Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).
Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.
Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рис. 4.4.
Рис. 4.4. Схемы определения твердости: а – по Бринеллю;
б – по Роквеллу; в – по Виккерсу
Твердость по Бринеллю ( ГОСТ 9012-59). Испытание проводят на твердомере Бринелля (рис.4.4 а). В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.
Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – , литой бронзы и латуни – , алюминия и других очень мягких металлов – .
Продолжительность выдержки : для стали и чугуна – 10 с, для латуни и бронзы – 30 с.
Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.
Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:
(3.10)
Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 – 80.
Метод Роквелла ГОСТ 9013-59. Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 4.4 б). Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1,6 мм, для более твердых материалов – конус алмазный.
Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой .
В зависимости от природы материала используют три шкалы твердости (табл. 4.1)
Таблица 4.1
Шкалы для определения твердости по Роквеллу
Метод Виккерса. Твердость определяется по величине отпечатка (рис.4.4 в).
В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136o.
Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:
(4.11)
Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.
Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои.Высокая точность и чувствительность метода.
Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).
Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс
(4.12)
Испытание проводят на оптическом микроскопе ПМТ-3, снабженном механизмом нагружения. Микротвердость оценивают по величине диагонали отпечатка.
Метод царапания. Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала. Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.
Динамический метод (по Шору). Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал. В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454-78) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.
Прочность — способность материала сопротивляться разрушению под действием нагрузок оценивается пределом прочности и пределом текучести. Важным показателем прочности материала является также удельная прочность — отношение предела прочности материала к его плотности. Предел прочности ув (временное сопротивление) — это условное напряжение в Па (Н/м2). соответствующее наибольшей нагрузке, предшествующей разрушению образца:
ув = Pmax/Fo, (4.13)
где Рmах — наибольшая нагрузка, Н;
Fo—начальная площадь поперечного сечения рабочей части образца, м2. Истинное сопротивление разрыву Sk — это напряжение, определяемое отношением нагрузки Рк в момент разрыва к площади минимального поперечного сечения образца после разрыва Fк (Sк = Рк/ Fк).
Предел текучести (физический) ут — это наименьшее напряжение (в МПа), при котором образец деформируется без заметного увеличения нагрузки: ут = Рт/ Fо, (4.14)
где Рт — нагрузка, при которой наблюдается площадка текучести, Н.
Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2% от расчетной длины образца: уо = P0,2/Fo.
Упругость — способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оценивают пределом пропорциональности упц и пределом упругости уун.
Предел пропорциональности упц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напряжением и деформацией образца у пц = Рпц / Ро.
Предел упругости (условный) у0,05 — это условное напряжение в МПа. соответствующее нагрузке, при которой остаточная деформация впервые достигает 0,05 %, от расчетной длины образца lo:
у0,05 = P0,05/F0, (4.15)
где P0,05 — нагрузка предела упругости, Н.
Пластичность, т.е. способность материала принимать новую форму и размеры под действием внешних сил, не разрушаясь, характеризуется относительным удлинением и относительным сужением.
Относительное удлинение (после разрыва) д — это отношение приращения (lk— lo) расчетной длины образца после разрыва к его первоначальной расчетной длине lo, выраженное в процентах:
д = ((1к -1о)/1о) 100%. (4.16)
Относительное сужение (после разрыва) Ш — это отношение разности начальной и минимальной площадей (Fo - Fк) поперечного сечения образца после разрыва к начальной площади Fo поперечного сечения, выраженное в про центах:
Ш = [( F0 – Fk) / Fо] 100%. (4.17)
Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.
Ударная вязкость, т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надреза KC=W/F.
Для испытания (ГОСТ 9454—78) изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.
Определение ударной вязкости особенно важно для некоторых металлов, работающих при минусовых температурах и проявляющих склонность к хладноломкости. Чем ниже порог хладноломкости, т. е. температура, при которой вязкое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость снижение ударной вязкости при низких температурах.
Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.
Является энергетической характеристикой материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.
Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).
Влияние температуры. С повышением температуры вязкость увеличивается (см. рис. 4.5). Предел текучести Sт существенно изменяется с изменением температуры, а сопротивление отрыву Sот не зависит от температуры. При температуре выше Тв предел текучести меньще сопротивления отрыву. При нагружении сначала имеет место пластическое деформирование, а потом – разрушение. Металл находится в вязком состоянии.
Прт температуре ниже Тн сопротивление отрыву меньше предела текучести. В этом случае металл разрушается без предварительной деформации, то есть находится в хрупком состоянии. Переход из вязкого состояния в хрупкое осуществляется в интервале температур
Хладоломкостью – называется склонность металла к переходу в хрупкое состояние с понижением температуры.
Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.
Рис. 4.5. Влияние температуры на пластичное и хрупкое состояние
Способы оценки вязкости. Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению.Испытание проводят на образцах с надрезами определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника,который поднимают на определенную высоту (рис. 4.6)
Рис.4.6. Схема испытания на ударную вязкость: а – схема маятникового копра;
б – стандартный образец с надрезом; в – виды концентраторов напряжений;
г – зависимость вязкости от температуры
На разрушение образца затрачивается работа:
, (4.18)
где: Р – вес маятника,
Н – высота подъема маятника до удара,
h – высота подъема маятника после удара.
Характеристикой вязкости является ударная вязкость (ан), - удельная работа разрушения.
, (4.19)
где: F0 - площадь поперечного сечения в месте надреза.
ГОСТ 9454 – 78 ударную вязкость обозначает KCV. KCU. KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т) (рис. 4.6 в)
Серийные испытания для оценки склонности металла к хладоломкости и определения критических порогов хладоломкости.
Испытывают серию образцов при различных температурах и строят кривые ударная вязкость – температура ( ан – Т) (рис. 4.6 г), определяя пороги хладоломкости.
Порог хладоломкости - температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности. Чем ниже порог хладоломкости, тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации.
Циклическая вязкость — это способность материалов поглощать энергию при повторно-переменных нагрузках. Материалы с высокой циклической вязкостью быстро гасят вибрации, которые часто являются причиной преждевременного разрушения. Например, чугун, имеющий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем углеродистая сталь.
Оценка вязкости по виду излома. При вязком состоянии металла в изломе более 90 % волокон, за верхний порог хладоломкости Тв принимается температура, обеспечивающая такое состояние. При хрупком состоянии металла в изломе 10 % волокон, за нижний порог хладоломкости Тн принимается температура, обеспечивающая такое состояние. В технике за порог хладоломкости принимают температуру, при которой в изломе 50 % вязкой составляющей. Причем эта температура должна быть ниже температуры эксплуатации изделий не менее чем на 40oС.
Испытания на выностивость (ГОСТ 2860-90) дают характеристики усталостной прочности.
Усталость - разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.
Усталостная прочность – способность материала сопротивляться усталости.
Процесс усталости состоит из трех этапов, соответствующие этим этапам зоны в изломе показаны на рис. 4.7.
Рис. 4.7. Схема зарождения и развития трещины при переменном изгибе круглого образца: 1 – образование трещины в наиболее нагруженной части сечения, которая подвергалась микродеформациям и получила максимальное упрочнение;
2 – постепенное распространение трецины, гладкая притертая поверхность;
3 – окончательное разрушение, зона “долома“, живое сечение уменьшается,
а истинное напряжение увеличивается, пока не происходит разрушение хрупкое или вязкое
Характеристики усталостной прочности определяются при циклических испытаниях “изгиб при вращении“. Схема представлена на рис. 4.8.
Рис. 4.8. Испытания на усталость (а), кривая усталости (б)
Основные характеристики: Предел выносливпсти ( – при симметричном изменении нагрузки, – при несимметричном изменении нагрузки) – максимальное напряжение, выдерживаемое материалом за произвольно большое число циклов нагружения N.
Ограниченный предел выносливости – максимальное напряжение, выдерживаемое материалом за определенное число циклов нагружения или время.
Живучесть – разность между числом циклов до полного разрушения и числом циклов до появления усталостной трещины.
Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в которых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения (рис. 4.9) и состоящий из двух разных по внешнему виду частей. Одна часть 1 излома с ровной (затертой) поверхностью образуется вследствие трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая часть 2 с зернистым изломом возникает в момент разрушения образца.
Рис. 4.9. Устатолостный излом
Испытания на усталость проводят на специальных машинах. Наиболее распространены машины для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, а также машины для испытаний на растяжение — сжатие и на повторно-переменное кручение. В результате испытаний определяют предел выносливости, характеризующий сопротивление усталости.
Технологические свойства. Эти свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис. 4.10), осматривают.
Рис. 4.10. Технологические пробы: а – изгиб на определенный угол,
б – изгиб до параллельности сторон, в – изгиб до соприкосновения сторон,
г – на навивание, д – на сплющивание труб, е – на осадку
Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическими свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.
Обрабатываемость резанием — одна из важнейших технологических свойств, потому что подавляющее большинство заготовок, а так же деталей сварных узлов и конструкций подвергается механической обработке. Одни металлы обрабатываются хорошо до получения чистой и гладкой поверхности, другие же, имеющие высокую твердость, плохо. Очень вязкие металлы с низкой твердостью также плохо обрабатываются: поверхность получается шероховатой, с задирами. Улучшить обрабатываемость, например, стали можно термической обработкой, понижая или повышая ее твердость.
Свариваемость — способность металлов образовывать сварное соединение, свойства которого близки к свойствам основного металла. Ее определяют пробой сваренного образца на загиб или растяжение.
Ковкость — способность металла обрабатываться давлением в холодном или горячем состоянии без признаков разрушения. Ее определяют кузнечной пробой на осадку до заданной степени деформации. Высота образца для осадки равна обычно двум его диаметрам. Если на боковой поверхности образца трещина не образуется, то и такой образец считается выдержавшим пробу; а испытуемый металл — пригодным для обработки давлением.
Литейные свойства металлов характеризуют способность их образовывать отливки, без трещин, раковин и других дефектов. Основными литейными свойствами являются, жидкотекучесть, усадка и ликвация.
Жидкотекучесть — способность расплав ленного металла хорошо заполнять полость литейной формы.
Усадка при кристаллизации — это уменьшение объема металла при переходе из жидкого состояния в твердое; является, причиной образования усадочных раковин и усадочной пористости в слитках и отливках.
Ликвация — неоднородность химического состава сплавов, возникающая при их кристаллизации, обусловлена тем. что сплавы в отличие от чистых металлов кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод).
Дата добавления: 2016-01-26; просмотров: 1896;