Тема 1.3. МОДЕЛИРОВАНИЕ В СТРОИТЕЛЬСТВЕ
Модели сложных систем
Под моделированием понимается процесс исследования реальной системы, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему.
Общими функциями моделирования являются описание, объяснение и прогнозирование поведения реальной системы.
Типовыми целями моделирования могут быть поиск оптимальных или близких к оптимальным решений, оценка эффективности решений, определение свойств системы (чувствительности к изменению значений характеристик и др.), установление взаимосвязей между характеристиками системы, перенос информации во времени. Термин «модель» имеет многочисленные трактовки. В наиболее общей формулировке будем придерживаться следующего определения. Модель - это объект, который имеет сходство в некоторых отношениях с прототипом и служит средством описания и/или объяснения и/или прогнозирования поведения прототипа.
Важнейшим качеством модели является то, что она дает упрощенный образ, отражающий не все свойства прототипа, а только те, которые существенны для исследования.
Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени. Для адекватного моделирования этих аспектов в автоматизированных информационных системах различают функциональные, информационные и поведенческие модели, пересекающиеся друг с другом.
Функциональная модель системы описывает совокупность выполняемых системой функций, характеризует морфологию системы (ее построение) - состав функциональных подсистем, их взаимосвязи.
Информационная модель отражает отношения между элементами системы в виде структур данных (состав и взаимосвязи).
Поведенческая (событийная) модель описывает информационные процессы (динамику функционирования), в ней фигурируют такие категории как состояние системы, событие, переход из одного состояния в другое, условия перехода, последовательность событий.
Особенно велико значение моделирования в системах, где натурные эксперименты невозможны по целому ряду причин: сложность, большие материальные затраты, уникальность, длительность эксперимента. Так, нельзя «провести войну в мирное время», натурные испытания некоторых типов систем связаны с их разрушением, для экспериментальной проверки сложных систем управления требуется длительное время и т.д.
Можно выделить три основные области применения моделей', обучение, научные исследования, управление. При обучении с помощью моделей достигается высокая наглядность отображения различных объектов и облегчается передача знаний о них. Это, в основном, модели, позволяющие описать и объяснить систему. В научных исследованиях модели служат средством получения, фиксирования и упорядочения новой информации, обеспечивая развитие теории и практики. В управлении модели используются для обоснования решений. Такие модели должны обеспечить как описание, так и объяснение и предсказание поведения систем.
Классификация видов моделирования систем
Классификация видов моделирования может быть проведена по разным признакам. Один из вариантов классификации приведен на рис. 16.1.
Моделирование в соответствии с классификационным признаком полноты делится на полное, неполное и приближенное. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие невозможно.
Рис. 16.1 Классификация видов моделирования |
В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: детерминированное и стохастическое, статическое и динамическое, дискретное, непрерывное и дискретно-непрерывное.
Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания состояния объекта в фиксированный момент времени, а динамическое моделирование — для исследования объекта во времени. При этом оперируют аналоговыми (непрерывными), дискретными и смешанными моделями.
В зависимости от формы реализации носителя и сигнатуры моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуация микромира). Мысленное моделирование реальных систем осуществляется в виде наглядного, символического и математического. Для представления функциональных, информационных и событийных моделей этого вида моделирования разработано значительное число средств и методов.
При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы.
В основу гипотетического моделирования кладут гипотезу о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на применении аналогий различных уровней. В случае достаточно простых объектов наивысшим уровнем является полная аналогия. С усложнением системы используются аналогии последующих уровней, когда аналоговая модель отображает несколько (или только одну) сторон функционирования объекта. Макетирование применяют, когда протекающие в реальном объекте процессы не поддаются физическому моделированию или могут предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте.
Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора понятий исследуемой предметной области, причем этот набор должен быть фиксированным. Под тезаурусом понимается словарь, отражающий связи между словами или иными элементами данного языка, предназначенный для поиска слов по их смыслу.
Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.
Математическое моделирование - это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В принципе для исследования характеристик любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, т.е. построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и от точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения.
Для представления математических моделей могут использоваться различные формы записи. Основными являются инвариантная, аналитическая, алгоритмическая и схемная (графическая) формы моделирования.
Инвариантная форма - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели. Аналитическая форма - запись модели в виде результата решения исходных уравнений модели. Обычно модели в аналитической форме представляют собой явные выражения выходных параметров как функций входов и переменных состояния.
Для аналитического моделирования характерно то, что, в основном, моделируется только функциональный аспект системы. При этом глобальные уравнения системы, описывающие закон (алгоритм) её функционирования, записываются в виде некоторых аналитических соотношений (алгебраических, интег- родифференциальных, конечноразностных и т.д.) или логических условий. Аналитическая модель исследуется несколькими методами:
- аналитическим, когда стремятся получить в общем виде явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными состояния системы;
- численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных (напомним, что такие модели называются цифровыми);
- качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость).
В настоящее время распространены компьютерные методы исследования характеристик процесса функционирования сложных систем. Для реализации математической модели необходимо построить соответствующий моделирующий алгоритм.
Алгоритмическая форма - запись соотношений модели и выбранного численного метода решения в форме алгоритма. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов при различных внешних воздействиях. Собственно имитацию названных процессов называют имитационным моделированием.
При имитационном моделировании воспроизводится алгоритм функционирования системы во времени - поведение системы, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и другие, которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования систем, а часто - и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.
В имитационном моделировании различают метод статистических испытаний (Монте-Карло) и метод статистического моделирования.
Метод Монте-Карло - численный метод, применяемый для моделирования случайных величин и функций, вероятностные характеристики которых совпадают с решениями аналитических задач. Метод состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и функций, с последующей обработкой информации методами математической статистики.
Если этот прием применяется для машинной имитации в целях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования.
Метод имитационного моделирования применяется для оценки вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных её параметров. Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза систем, когда требуется создать систему с заданными характеристиками при определенных ограничениях.
Комбинированное (аналитико-имитационное) моделирование позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей выполняют предварительную декомпозицию процесса функционирования объекта на составляющие подпроцессы, и для тех из них, в случае которых это возможно, используют аналитические модели, а для остальных подпроцессов строят имитационные модели. Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использованием аналитического или имитационного моделирования в отдельности.
Информационное (кибернетическое) моделирование связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов реальным процессам, происходящим в моделях. В этом случае стремятся отобразить лишь некоторую функцию, рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Таким образом, в основе информационных (кибернетических) моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, при иной физической реализации процесса. Так, например, экспертные системы являются моделями лиц, принимающих решение.
Структурное моделирование системного анализа базируется на некоторых специфических особенностях структур определенного вида, которые используются как средство исследования систем или служат для разработки на их основе специфических подходов к моделированию с применением других методов формализованного представления систем (теоретико-множественных, лингвистических, кибернетических и т.д.). Развитием структурного моделирования является объектно-ориентированное моделирование.
Структурное моделирование системного анализа включает:
- методы сетевого моделирования;
- сочетание методов структуризации с лингвистическими;
- структурный подход в направлении формализации построения и исследования структур разного типа (иерархических, матричных, произвольных графов) на основе теоретико-множественных представлений и понятия номинальной шкалы теории измерений.
При этом термин «структура модели» может применяться как к функциям, так и к элементам системы. Соответствующие структуры называются функциональными и морфологическими. Объектно-ориентированное моделирование объединяет структуры обоих типов в иерархию классов, включающих как элементы, так и функции.
Ситуационное моделирование опирается на модельную теорию мышления, в рамках которой можно описать основные механизмы регулирования процессов принятия решений. В центре модельной теории мышления лежит представление о формировании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное поведение человека строится путем формирования целевой ситуации и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенными отношениями, отображающими семантику предметной области. Модель объекта имеет многоуровневую структуру и представляет собой тот информационный контекст, на фоне которого протекают процессы управления. Чем богаче информационная модель объекта и выше возможности манипулирования ею, тем лучше и многообразнее качество принимаемых решений при управлении.
В случае реального моделирования используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.д.). Реальное моделирование является наиболее адекватным, но его возможности ограничены.
Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. Такое моделирование подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент.
Научный эксперимент характеризуется широким использованием средств автоматизации, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. Одна из разновидностей эксперимента - комплексные испытания, в процессе которых вследствие повторения испытаний объектов в целом (или больших частей системы) выявляются общие закономерности о характеристиках качества, надежности этих объектов. В этом случае моделирование осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т.е. можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться отдельные критические ситуации и определиться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процесс функционирования объекта.
Другим видом реального моделирования является физическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и модельном (псевдореальном) масштабах времени или рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени.
Дата добавления: 2016-01-16; просмотров: 2269;