Построение на чертеже натуральной величины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
Чтобы определить на эпюре истинную (натуральную) длину отрезка прямой, можно воспользоваться способом прямоугольного треугольника (рис.2.16, 2.1.7),
Прямая АВ - общего положения (то есть, не параллельна и не перпендикулярна ни одной из плоскостей проекций). Поэтому обе ее проекции А'В' и А"В" имеют искажения по сравнению с натуральными размерами.
На рис.2.16 слева, длина отрезка АВ и угол, составленный прямой АВ с плоскостью Н, определены из прямоугольного треугольника, построенного на проекцииА'В' при втором катете В'В°,равном В" 1.АВ=А'В°.
Для установления натуральной величины отрезка АВ проводим на одной из проекций (горизонтальной) прямую параллельную оси х.
Полученный отрезок А2 откладываем на перпендикулярно проведенном из точки А" отрезке и полученную точку А° соединяем с В". В результате построений получаем натуральную величину прямой АВ и угол j2, который равен истинному углу наклона прямой АВ к плоскости V.
Отрезки линий уровня - фронтали, горизонтали, профильные проецируются в натуральную величину, соответственно на фронтальную, горизонтальную и профильные плоскости проекции. Во всех остальных случаях отрезки прямых проецируются с искажением.
Рис.2.16 Рис.2.17
Угол прямой линии с плоскостью проекций определяется как острый угол между этой прямой и ее проекций на данную плоскость (рис. 2.17).
Этот угол входит в тот же прямоугольный треугольник, который строят для Н.В.
Если прямая имеет какую - либо проекцию, равную действительной ее длине, то на комплексном чертеже угол между проекцией этой прямой и плоскостью проекций будет действительным углом прямоугольного треугольника.
Дата добавления: 2016-01-11; просмотров: 1568;