Параметрический резонанс. Автоколебания.

Параметрическое возбуждение колебаний – один из параметров колебательной системы периодически изменяется со временем с частотой . Оно проявляется в известном всем нам с детства процессе. Человек, стоя на качелях, может сам себя раскачать, перодически приседая и поднимаясь во весь рост с частотой в два раза большей собственной частоты такого физического маятника.

 

Простой пример: маятник с переменной длиной.

Будем считать, что при прохождении положения равновесия длина маятника уменьшается на величину ( ) , а в крайнем положении – увеличивается на то же значение. В среднем за период колебаний длина маятника остается неизменной. Такое измене-ние длины соответствует условию

 

, (1)

 

где - собственная частота.

Рост энергии колебаний со временем объясняется тем, что опускание маятника происходит в наклон-ном положении и работа внешней силы за каждое подтягивание и опускание равна

 

( ).

 

Полная работа внешней силы за период колебаний

 

.

 

Здесь - скорость маятника в нижнем положении. Второе слагаемое в скобках учитывает дополнительную работу для создания нормального ускорения .

В силу того, что энергия маятника постоянно возрастает. Учитывая малость можно записать

 

, или , где .

 

Решение этого дифференциального уравнения имеет вид:

 

, - начальная энергия.

 

Таким образом, при выполнении условия (1) энергия колебаний экспоненциально растет со временем. Это явление называется параметрическим резонансом. При наличии трения энергия экспоненциально умеьшается со временем по закону

 

.

 

Сравнивая два последних выражения, получаем, что параметрический резонанс имеет место при условии . Величина пропорциональна амплитуде колебаний длины маятника . Следовательно, параметрический резонанс, в отличие от обычного резонанса, рассмотрен-ного в лекции 12, может возникать лишь при амплитуде, превышающей некоторое пороговое значение.

Параметрические колебания играют очень важную во многих физических системах (генера-торы электромагниных колебаний, установки с лазерным термоядерным синтезом и т. д.).

 

Рассмотренные два типа незатухающих колебаний существуют благодаря постоянному вводу энергиии в колебательную систему за счет работы внешних сил. Существует еще один важный тип незатухающих колебаний – автоколебания. В этом случае система сама регули-рует поступление энерги от некоторого источника для компенсации потерь на трение. Это осуществляется с помощью некоторого устройства, управляемого посредством обратой связи с колебательной системой.

 

 

В отличие от свободных колебаний, амплитуда автоколебаний определяется не начальными условиями, а свойствами самой системы. Примеры механических автоколебаний: механи-ческие часы, колебания струны под действием смычка, движение поршня паровой машины и т.д. Важным частным случаем автоколебаний являются так называемые релаксационные колебания, при которых в системе в течение длительного времени накапливаются измене-ния, а затем происходит резкий переход в первоначальное состояние.

 

ЛЕКЦИЯ 14

 








Дата добавления: 2016-01-09; просмотров: 665;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.