Закон Ома в интегральной и дифференциальной форме

Рис.3.16 Пусть по проводнику длиной l и сечением S течет ток I. В проводнике создается электрическое поле напряженности E, а j1 и j2 – потенциалы на концах проводника (рис.3.16). В случае однородного проводника величину j1 - j2 = U можно назвать падением напряжения на участке проводника.

Закон Ома: сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:

(3.47)

где R – электрическое сопротивление проводника.

(3.47) – закон Ома в интегральной форме.

Размерность сопротивления в СИ: [R] = В/А = Ом.

Ом – сопротивление такого проводника, в котором при напряжении в 1 В течет ток 1А.

Сопротивление зависит от геометрических размеров и формы проводников, материала и температуры проводников. Для цилиндрического проводника

(3.48)

где r - удельное сопротивление проводника.

Удельное сопротивление численно равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м2. Размерность удельного сопротивления в СИ: [r] = Ом×м.

Величина, обратная сопротивлению, называется проводимостью.

Величина, обратная удельному сопротивлению, называется удельной проводимостью:

(3.49)

Единица, обратная Ом, называется Сименсом [См].

Учитывая (3.46) - (3.49), а также , получим:

(3.50)

(3.50) – закон Ома в дифференциальной форме.

 








Дата добавления: 2016-01-07; просмотров: 881;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.