Номенклатура и изомерия аренов

Бензол

Простейшим представителем аренов является бензол. Рас­смотрим подробнее его свойства.

Физические свойства

Бензол представляет собой прозрачную бесцветную легколе­тучую жидкость с характерным запахом (именно по причине сильного запаха ароматические соединения получили свое назва­ние). Температура плавления 5,5°С, кипения — 80°С . Не смеши­вается с водой, но хорошо смешивается с большинством органи­ческих растворителей. Является растворителем для неполярных органических веществ. Горит коптящим пламенем (неполное сго­рание) с образованием, кроме углекислого газа и воды, значитель­ного количества сажи. Ядовит и как жидкость, и в виде паров при вдыхании.

Получение бензола

1. В промышленности бензол получают риформингом нефти, кото­рый по сути представляет собой дегидрогенизацию алканов неф­ти с образованием циклического скелета. В «чистом» виде ос­новная реакция риформинга — это дегидрогенизация гексана:

Кроме того, бензол является одним из летучих продуктов кок­сования. Коксование — это нагревание каменного угля до 1000°С без доступа воздуха. При этом получается также много других ценных реагентов для органического синтеза и исполь­зуемый в металлургии кокс. Также бензол можно получить тримеризацией ацетилена над активированным углем при 100°С.

 

 

2. В лаборатории бензол, разумеется, не получают, но теоретичес­ки методы его синтеза есть (они используются для получения его производных). И промышленные, и лабораторные методы отражены на приведенной ниже схеме.

Схемаметодов получения бензола

Промышленные методы.

Химические свойства бензола

Химические свойства бензола определяются, безусловно, его p-системой. Так же, как и в случае алкенов, она может быть атакована электрофильной частицей. Однако в случае аромати­ческих соединений результат такой атаки будет совершенно иным. Высокая стабильность p-системы приводит к тому, что в конце реакции она, как правило, восстанавливается и результа­том реакции является не присоединение (которое бы разрушило

p-систему), а электрофильное замещение. Рассмотрим подробнее его механизм.

На первой стадии атака молекулы АВ, содержащей электрофильный центр А, приводит к образованию крайне нестабильного p-комплекса (стадия 1). При этом ароматическая система не нару­шена. Далее образуется ковалентная связь одного из атомов коль­ца с частицей А (стадия 2). При этом, во-первых, разрывается связь А-В, а во-вторых, разрушается p-система. Образовавшаяся нестабильная положительно заряженная молекула называется s-комплексом. Как уже было сказано, восстановление p-системы энергетически весьма выгодно, и это приводит к разрыву либо связи С-А (и тогда молекула возвращается в исходное состояние), либо связи С-Н (стадия 3). В последнем случае реакция заканчи­вается, и получается продукт замещения водорода на А.

Большинство реакций ароматических соединений имеют именно такой механизм (электрофильное замещение, сокращен­но SE). Рассмотрим некоторые из них.

1. Галогенирование. Происходит только в присутствии катализаторов — кислот Льюиса (см. «Теория Льюиса»). Задача катали­затора — поляризация молекулы галогена для образования хорошего электрофильного центра:

| АlСl3+Сl2«Сl+[АlСl4]-Образовавшаяся частица имеет электрофильный атом хлора, и

происходит реакция:

К Нитрование. Осуществляется смесью азотной и серной кис­лот (нитрующей смесью). В нитрующей смеси происходит реакция:

HNO3+H2SO4«NO+2[HSO-4]+Н2O

 

В образовавшемся гидросульфате нитрония есть мощный электрофильный центр — ион нитрония NO+2. Соответственно проходит реакция, общее уравнение которой:

3. Сульфирование. В концентрированной серной кислоте есть рав­новесие:

2H2SO4«SO3H+[HSO4]-2O

В молекуле в правой части равновесия есть сильный электрофил SO3H+, который вступает в реакцию с бензолом. Результи­рующая реакция:

Алкилирование по Фриделю-Крафтсу. При взаимодействии бензола с алкилхлоридами или алкенами в присутствии кислот Льюиса (обычно галогенидов алюминия) получаются алкилзамещенные бензолы. В случае алкилгалогенидов первая стадия процесса:

RСl+АlСl3«R+[АlСl4]-На второй стадии электрофильная частица R+атакует p-систему:

В случае алкенов кислота Льюиса поляризует двойную связь алкена, и на углероде опять-таки образуется электрофильный центр:

К неэлектрофильным реакциям относятся:

1. Гидрирование бензола. Эта реакция идет с разрушением p-системы и требует жестких условий (высокое давление, темпера­тура, катализатор — платиновые металлы):

2. Радикальное хлорирование. В отсутствие кислот Льюиса и при жестком ультрафиолетовом облучении бензол может реагиро­вать с хлором по радикальному механизму. При этом разруша­ется p-система и образуется продукт присоединения хлора — твердое вещество гексахлоран, которое раньше использовалось в качестве инсектицида:

Гомологи бензола

Номенклатура и изомерия аренов

Все арены условно можно разделить на два ряда. Первый ряд — производные бензола (толуол, дифенил): второй ряд — кон­денсированные (полиядерные) арены (нафталин, антрацен).

Рассмотрим гомологический ряд бензола, соединения этого ряда имеют общую формулу СnН2n.6. Структурная изомерия в го­мологическом ряду бензола обусловлена взаимным расположени­ем заместителей в ядре. Монозамещенные производные бензола Не имеют изомеров положения, так как все атомы в бензольном ядре равноценны,

I Группа С6Н5 называется фенильной. Фенильная и замещенные фенильные группы называются арильными. Ниже показаны некоторые производные бензола:

 

 

Схема реакций бензола

Изомеры с двумя заместителями в положениям 1,2; 1,3 и 1,4 называются орто-, мета- и пара-изомерами:

Номенклатура ароматических соединений

Ниже приведены названия некоторых ароматических соеди­нений:

C6H5NH3+Сl- Фениламмоний хлорид (анилиний хлорид)

СбН5СO2Н Бензолкарбоновая кислота (бензойная кислота)

C6H5CO2C2H5 Этиловый эфир бензолкарбоновой кислоты (этилбензоат)

C6H5COCl Бензолкарбонилхлорид (бензоилхлорид)

C6H5CONH2 Бензолкарбоксамид (бензамид)

C6H5CN Бензолкарбонитрил (бензонитрил)

C6H5CHO Бензолкарбальдегид (бензальдегид)

C6H5COCH3 Ацетофенон

C6H5OH Фенол

C6H5NH2 Фениламин (анилин)

C6H5OCH3 Метоксибензол (анизол)

Эти названия соответствуют номенклатуре IUPAC. В скобках Указаны традиционные названия, которые по-прежнему широко распространены и вполне допустимы.

 

Номенклатура аренов

Название производного бензола с двумя или более заместителя­ми в бензольном кольце строится таким образом. Атом углерода бензольного кольца, к которому присоединен заместитель, находя­щийся ближе других к началу приведенного выше списка, получает номер 1. Далее атомы углерода бензольного кольца нумеруются так, чтобы локант — номер второго заместителя — был наименьшим.

3-гидроксибензолкарбоновая кислота (3-гядроксибензойная кислота)

Карбоксильная группа рассматривается как главная группа, и ей присваивается локант «1». Нумерация кольца строится так, чтобы гидроксильная группа получила меньший («3», а не «5») локант.

2-аминобензолкарб альдегид (2-аминобензальдегид)

Группа —CHO рассматривается как главная. Она получает локант «1». Группа—NH2 находится в положении «2», а не «6». Кроме того, допустимо название о-аминобензальдегид.

1-бром-2-нитро-4-хлорбензол Эти группы перечисляются в алфавитном порядке.

Получение аренов

Получение из алифатических углеводородов. При пропуска­нии алканов с неразветвленной цепью, имеющих не менее 6 атомов углерода в молекуле, над нагретой платиной или окси­дом хрома (III) происходит дегидроциклизация — образование арена с выделением водорода. Например:

2. Дегидрирование циклоалканов. Реакция происходит при про­пускании паров циклогексана и его гомологов над нагретой платиной:

|. Получение бензола тримеризацией ацетилена. По способу Н. Д. Зелинского и Б. А. Казанского бензол можно получить, пропуская ацетилен через нагретую до 100°С трубку с активированным углем. Весь процесс можно изобразить схемой:

4. Получение гомологов бензола по реакции Фриделя-Крафтса (см. Химические свойства бензола).

5. Сплавливание солей ароматических кислот со щелочью: C6H6-COONa+NaOH ®C6H6+Na2CO3

Применение аренов

Арены применяются как химическое сырье для производства лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ. Широко используют арены как растворители.

Реакции дегидрирования позволяют использовать углеводо­роды нефти для получения углеводородов ряда бензола. Они ука­зывают на связь между различными группами углеводородов и на взаимное превращение их друг в друга.








Дата добавления: 2016-01-03; просмотров: 5328;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.