Номенклатура, молекулярная масса и значения pK аминокислот
Аминокислота | Обозначение | Молеку-лярная масса | pK1 (a−СООН) | pK2 (a−NH3+) | pKR (R-группы) |
Глицин | Gly G | 2,34 | 9,60 | − | |
Аланин | Ala A | 2,34 | 9,69 | − | |
Валин | Val V | 2,32 | 9,62 | − | |
Лейцин | Leu L | 2,36 | 9,60 | − | |
Изолейцин | Ile I | 2,36 | 9,68 | − | |
Пролин | Pro P | 1,99 | 10,96 | − | |
Фенилаланин | Phe F | 1,83 | 9,13 | − | |
Тирозин | Tyr Y | 2,20 | 9,11 | 10,07 | |
Триптофан | Trp W | 2,38 | 9,39 | − | |
Серин | Ser S | 2,21 | 9,15 | 13,60 | |
Треонин | Thr T | 2,11 | 9,62 | 13,60 | |
Цистеин | Cys C | 1,96 | 10,78 | 10,28 | |
Метионин | Met M | 2,28 | 9,21 | − | |
Аспарагин | Asn N | 2,02 | 8,80 | − | |
Глутамин | Gln Q | 2,17 | 9,13 | − | |
Аспартат | Asp D | 1,88 | 9,60 | 3,65 | |
Глутамат | Glu E | 2,19 | 9,67 | 4,25 | |
Лизин | Lys K | 2,18 | 8,95 | 10,53 | |
Аргинин | Arg R | 2,17 | 9,04 | 12,48 | |
Гистидин | His H | 1,82 | 9,17 | 6,00 |
Аминокислоты различаются по растворимости в воде. Это связано с их цвиттерионным характером, а также со способностью радикалов взаимодействовать с водой (гидратироваться). К гидрофильным относятся радикалы, содержащие катионные, анионные и полярные незаряженные функциональные группы. К гидрофобным – радикалы, содержащие алкильные или арильные группы.
В зависимости от полярности R-групп выделяют четыре класса аминокислот: неполярные, полярные незаряженные, отрицательно заряженные и положительно заряженные.
К неполярным аминокислотам относятся: глицин; аминокислоты с алкильными и арильными боковыми цепями – аланин, валин, лейцин, изолейцин; тирозин, триптофан, фенилаланин; иминокислота – пролин. Они стремятся попасть в гидрофобное окружение «внутри» молекулы белка (рис.1).
Рис. 1. Неполярные аминокислоты
К полярным заряженным аминокислотам относятся: положительно заряженные аминокислоты – гистидин, лизин, аргинин (рис. 2); отрицательно заряженные аминокислоты – аспарагиновая и глутаминовая кислота (рис. 3). Они обычно выступают наружу, в водное окружение белка.
Остальные аминокислоты образуют категорию полярных незаряженных: серин и треонин (аминокислоты-спирты); аспарагин и глутамин (амиды аспарагиновой и глутаминовой кислот); цистеин и метионин (серосодержащие аминокислоты).
Поскольку при нейтральном значении рН СООН-группы глутаминовой и аспарагиновой кислот полностью диссоциированы, их принято называть глутаматом и аспартатом независимо от природы присутствующих в среде катионов.
В ряде белков содержатся особые аминокислоты, образующиеся путем модификации обычных аминокислот после их включения в полипептидную цепь, например, 4-гидроксипролин, фосфосерин, g-карбоксиглутаминовая кислота и др.
Рис. 2. Аминокислоты с заряженными боковыми группами
Все аминокислоты, образующиеся при гидролизе белков в достаточно мягких условиях, обнаруживают оптическую активность, т. е. способность вращать плоскость поляризованного света (за исключением глицина).
Рис. 3. Аминокислоты с заряженными боковыми группами
Оптической активностью обладают все соединения, способные существовать в двух стереоизомерных формах L- и D-изомеры (рис. 4). В состав белков входят только L-аминокислоты.
L-аланин D-аланин
Рис. 4. Оптические изомеры аланина
Глицин не имеет асимметрического атома углерода, а треонин и изолейцин содержат по два асимметрических атома углерода. Все остальные аминокислоты имеют один асимметрический атом углерода.
Оптически неактивная форма аминокислоты называется рацематом, представляющим собой эквимолярную смесь D- и L-изомеров, и обозначается символом DL-.
Мономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками. Остатки аминокислот соединяются друг с другом пептидной связью (рис. 5), в формировании которой принимает участие a-карбоксильная группа одной аминокислоты и α-аминогруппа другой.
Рис. 5. Образование пептидной связи
Равновесие этой реакции сдвинуто в сторону образования свободных аминокислот, а не пептида. Поэтому биосинтез полипептидов требует катализа и затрат энергии.
Поскольку дипептид содержит реакционноспособные карбоксильную и аминогруппу, то к нему с помощью новых пептидных связей могут присоединяться другие аминокислотные остатки, в результате образуется полипептид – белок.
Полипептидная цепь состоит из регулярно повторяющихся участков – групп -NH-CHR-CO-, образующих основную цепь (скелет или остов молекулы), и вариабельной части, включающей характерные боковые цепи. R-группы аминокислотных остатков выступают из пептидного остова и формируют в значительной степени поверхность полимера, определяя многие физические и химические свойства белков. Свободное вращение в пептидном остове возможно между атомом азота пептидной группы и соседним a-углеродным атомом, а также между a-углеродным атомом и углеродом карбонильной группы. Благодаря этому линейная структура может приобретать более сложную пространственную конформацию.
Аминокислотный остаток, имеющий свободную a-аминогруппу, называется N-концевым, а имеющий свободную a-карбоксильную группу – С-концевым.
Структуру пептидов принято изображать с N-конца.
Иногда концевые a-амино- и a-карбоксильная группы связываются одна с другой, образуя циклические пептиды.
Пептиды различаются количеством аминокислот, аминокислотным составом и порядком соединения аминокислот.
Пептидные связи очень прочные, и для их химического гидролиза требуются жесткие условия: высокие температура и давление, кислая среда и длительное время.
В живой клетке пептидные связи могут разрываться с помощью протеолитических ферментов, называемых протеазами, или пептидгидролазами.
Так же, как и аминокислоты, белки являются амфотерными соединениями и в водных растворах заряжены. Для каждого белка существует своя изоэлектрическая точка – значение рН, при котором положительные и отрицательные заряды белка полностью скомпенсированы и суммарный заряд молекулы равен нулю. При значениях рН выше изоэлектрической точки белок несет отрицательный заряд, а при значениях рН ниже изоэлектрической точки – положительный.
Дата добавления: 2015-12-22; просмотров: 2793;