Силовые модули на MOSFET-транзисторах
Тип | Схема | UDS, В | ID, А | RDS(on), мОм | PD, Вт |
SKM111AR SKM121AR SKM141 SKM151AR SKM151F SKM181 SKM181F SKM191 SKM191F | 8,5 | ||||
SKM214A SKM224A SKM244F SKM254F SKM284F SKM294F | |||||
SKM651F SKM652F SKM681F SKM682F SKM691F SKM692F | 9,5 |
Несмотря на большие успехи в развитии мощных MOSFET-транзисторов, высоковольтные силовые ключи на их основе по предельным энергетическим показателям уступают биполярным транзисторам. Это определяется относительно высоким сопротивлением открытого канала (табл. 3.4) при рабочих напряжениях более 200 В. Силовые MOSFET-ключи на пониженные напряжения конкурентов не имеют.
Силовые ключи на IGBT-транзисторах(рис. 2.1, ж)являются продуктом развития технологии силовых MOSFET-транзисторов и сочетают в себе достоинства двух транзисторов в одной полупроводниковой структуре: биполярного (высокое рабочее напряжение, большая токовая нагрузка и малое сопротивление во включенном состоянии) и полевого (высокое входное сопротивление и высокое быстродействие). Эквивалентная схема включения двух транзисторов приведена на рис. 3.2 (на схеме соединения эмиттера и стока, базы и истока являются внутренними).
Рис. 3.2. Эквивалентная схема IGBT-транзистора
Коммерческое использование IGBT-началось с середины 80-х годов и уже претерпело шесть стадий (поколений) своего развития . Прогресс в технологии IGBT шел в направлении увеличения рабочих напряжений до 4500 В и токов до 1800 А, а также снижения потерь напряжения до 1,0…1,5 В и повышения эффективности IGBT-ключей за счет снижения потерь мощности в кристалле (рис. 3.3 [12]).
Рис. 3.3. Эволюция потерь мощности для различных поколений IGBT в инверторе
Схематичный разрез структуры IGBT показан на рис. 3.4, а; на рис. 3.4, б изображена структура IGBT, выполненного по технологии с вертикальным затвором (trench-gatetechnology), позволяющей уменьшить размеры прибора в несколько раз. Структура IGBT содержит дополнительный p+ слой, в результате чего и образуется p-n-p биполярный транзистор с очень большой площадью, способный коммутировать большие токи. Дополнительный p–n-переход инжектирует дырки в n– область, что ведет к падению сопротивления этой области и уменьшению падения напряжения на приборе в сравнении с мощным
MOSFET-транзистором.
а б
Рис. 3.4. Схематичный разрез элементарных ячеек IGBT:
а – обычного (планарного); б – выполненного по «trench-gatetechnology»
Традиционно IGBT используются в тех случаях, когда необходимо работать с высокими токами и напряжениями, и выпускаются как в отдельном исполнении, так и в виде модулей (рис. 3.5) в прямоугольных корпусах с односторонним прижимом и охлаждением и в таблеточном исполнении с двухсторонним охлаждением. Для управления силовыми IGBT-ключами можно использовать те же драйверы, что и для мощных MOSFET-транзисторов.
Рис. 3.5. IGBT-модуль фирмы Mistubishi
Напряжение на открытом приборе складывается из напряжения на прямо-смещенном эмиттерном переходе p–n–p-транзистора (диодная составляющая) и падения напряжения на сопротивлении модулируемой n–-области (омическая составляющая):
, (3.6)
где – сопротивление MOSFET-транзистора в структуре IGBT (сопротивление эпитаксиального n–-слоя); – коэффициент передачи базового тока биполярного p-n-p-транзистора.
В настоящее время для уменьшения падения напряжения на IGBT-транзисторах в открытом состоянии, расширения диапазонов допустимых токов, напряжений и области безопасной работы они изготавливаются по технологии с вертикальным затвором trench-gatetechnology (рис. 3.4, б). При этом размер элементарной ячейки уменьшается в 2…5 раз. По быстродействию силовые IGBT-приборы пока уступают MOSFET-транзисторам, но превосходят биполярные.
Цифро-буквенное обозначение IGBT-транзисторов, выпускаемых компанией International Rectifier, приведено на рис. 3.6.
Рис. 3.6. Обозначение IGBT-транзисторов компании IR
Типичные значения времени рассасывания накопленного заряда и спада тока при выключении IGBT находятся в диапазонах 0,2…0,4 и 0,2…1,5 мкс соответственно. По частотным свойствам различают приборы IGBT co средней скоростью переключения (StandartSpeed) порядка единиц килогерц, скоростные (FastSpeed) – до 10 кГц, сверхскоростные (UltraFast) – до 60 кГц и IGBT серии Warp – до 150 кГц, сравнимые с MOSFET-транзисторами по скорости переключения.
3.2. Лабораторная работа «ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК
И ПАРАМЕТРОВ СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ
ТРАНЗИСТОРНЫХ КЛЮЧЕЙ»
Цель работы: получение переходных характеристик и характеристик насыщения силовых транзисторных ключей, определение по ним статических и динамических параметров, получение навыков по выбору мощных транзисторных ключей для силовых электронных устройств.
Дата добавления: 2015-12-16; просмотров: 3013;