Теорема про зміну кінетичної енергії механічної системи

Величина, яка характеризує рух тіла, називається кінетичною енергією. Ця скалярна величина завжди додатна, залежить тільки від стану механічної системи, і може бути знайдена за наступними правилами.

1. Якщо тверде тіло здійснює поступальний рух, то швидкості всіх його точок однакові і його кінетична енергія визначається як половина добутку маси тіла на квадрат швидкості

= . (7.1)

2. Якщо тверде тіло обертається навколо нерухомої осі (наприклад, ) з кутовою швидкістю , то його кінетична енергія дорівнює половині добутку моменту інерції тіла відносно осі обертання на квадрат кутової швидкості

. (7.2)

3. Якщо тверде тіло здійснює плоский рух, то такий рух можна розглядати як суперпозицію двох простих рухів – поступального руху центра мас зі швидкістю та обертального руху з кутовою швидкістю навколо осі, що проходить через центр мас перпендикулярно площині руху. Тоді його кінетична енергія визначається як

+ . (7.3)

7. Якщо механічна система складається з декількох тіл, то її кінетична енергія дорівнює сумі кінетичних енергій всіх тіл, що входять в систему, тобто

. (7.4)

Нагадаємо, що розмірністю кінетичної енергії в системі SI є 1 Дж = 1 Н·м.

Робота є фізична величина яка характеризує міру передачі руху від одного тіла до іншого.Ця фізична величина теж має розмірність джоуль, але її величина залежить від процесу передачі руху, і може бути як додатною, так і від’ємною. Елементарна робота сили при елементарному переміщенні матеріальної точки на визначається за правилами скалярного добутку як

= · = , (7.5)

де – кут між векторами та . Отже, ця величина

– додатна, якщо кут між напрямом сили та переміщенням гострий;

– дорівнює нулю, якщо цей кут прямий;

– від’ємна, якщо цей кут тупий.

Робота сили при переміщенні матеріальної точки від точки до точки визначається інтегралом

= . (7.6)

Розглянемо роботу конкретних сил, які можуть діяти в механічній системі.

1.Робота сил однорідного поля тяжіннявиконується силами тяжіння при переміщенні тіла (матеріальної точки) масою з початкового в кінцеве положення. Ця робота не залежить від форми траєкторії, і визначається лише різницею кінцевого тапочаткового положень тіла вздовж вертикалі. Наприклад, при переміщенні тіла з положення 1 в положення 2 (догори) по довільній траєкторії (рис. 7.1), робота сил тяжіння визначається як

, (7.7)

і буде від’ємною оскільки > . В таких випадках говорять про виконання роботи проти сил тяжіння. Навпаки, при переміщенні тіла з положення 2 в положення 1 (вниз) робота сил тяжіння буде додатною

> 0, (7.8)

і говорять про те, що така робота виконана силами тяжіння.

2.Робота сили пружності при розтягуванні (стискуванні) пружини жорсткістю від початкового положення до кінцевого положення визна-чається як

, (7.9)

де – довжина недеформованої пружини, і також не залежить від траєкторії точки, а залежить лише від початкового та кінцевого положень.

3. Робота сил при повороті тіла на кінцевий кут при обертанні навколо нерухомої осі (наприклад, ) визначається рівнянням

, (7.10)

де – момент зовнішньої сили відносно нерухомої осі, а – кут, на який повернулося тіло.

7.Робота сил тертя ковзання. Оскільки сила тертя завжди напрямлена в бік, протилежний відносній швидкості (проти переміщення), то робота сила тертя визначиться взятому зі знаком мінус добутку модуля сили тертя = ( – коефіцієнт тертя ковзання, – реакція опори) на довжину траєкторії

. (7.11)

5. Робота сил тертя кочення.Якщо тіло котиться без ковзання по поверхні іншого нерухомого тіла, сила тертя кочення створює момент = і для роботи сили тертя кочення отримуємо

, (7.12)

де – – коефіцієнт тертя кочення, – кут, на який повернулося тіло.

Зауважимо, що на відміну від кінетичної енергії системи, яка є функцією стану системи, робота є функцією процесу, які мають місце в системі, Одначе, між цими величинами існує певний зв’язок. Якщо в процесі руху механічна система перейшла з одного стану, який вона мала в момент часу = 0, в інший, що відповідає моменту часу , то зміна кінетичної енергії визначається роботою сил, які прикладені до системи

, (7.13)

де та – кінетична енергія механічної системи в кінцевому та початковому станах, а – повна робота, яку здійснюють при цьому переміщенні всі прикладені до системи внутрішні ( ) та зовнішні ( ) сили.

Рівняння (7.13) є записом теореми про зміну кінетичної енергії в інтегральній формі: зміна кінетичної енергії механічноїсистеми за певний проміжок часу дорівнює сумі робіт внутрішніх та зовнішніх сил, які діють на елементи системи протягом даного проміжку часу.

Відмітимо, що у випадку, коли матеріальна система складається з абсолютно твердих тіл (тобто коли можна нехтувати деформаціями в цій системі), то під дією внутрішніх сил не відбувається зміщень частинок системи, тому сума робіт всіх внутрішніх сил абсолютно твердого тіла при любому його переміщенні дорівнює нулю ( )і теорема про зміну кінетичної енергії набуває вигляду

. (7.14)

Контрольні запитання

1. Що таке кінетична енергія? У яких одиницях вона вимірюється? Чи може кінетична енергія мати від’ємне значення?

2. Як обчислити кінетичну енергію поступального, обертального та плоского рухів твердого тіла?

3. Що таке робота? У яких одиницях вона вимірюється?

4. Чи може робота сили мати від’ємне значення? В яких випадках?

5. Для яких сил робота не залежить від траєкторії руху тіла?

6. Сформулюйте теорему про зміну кінетичної енергії.

7. В яких випадках робота внутрішніх сил дорівнює нулю?

 









Дата добавления: 2015-12-10; просмотров: 1638;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.