Электропроводность металлов. При воздействии на металл электрического (или магнитного) поля (или разности температур ) в нем возникают потоки заряженных частиц и энергии

При воздействии на металл электрического (или магнитного) поля (или разности температур ) в нем возникают потоки заряженных частиц и энергии. Явления возникновения этих потоков или токов принято называть кинетическими эффектами или явлениями переноса, иначе - транспортными эффектами, имея в виду воздействие стационарных полей на неподвижные проводники. В таком случае ток или поток пропорционален разности потенциалов (или разности температур), а коэффициент пропорциональности определяется только геометрическими размерами проводника и физическими свойствами самого металла. При единичных геометрических размерах этот коэффициент зависит только от свойств данного металла и является его фундаментальной физической характеристикой, которая носит название кинетического коэффициента. При нахождении проводника в переменном поле возникающие в нем токи зависят не только от геометрических размеров и кинетического коэффициента, но и от частоты переменного поля, формы проводника, взаимного расположения элементов электрической цепи. Сопротивление проводника при переменном токе существенно зависит от его частоты, обусловленной спинэффектом - вытеснением тока из центра проводника на периферию. Из многих возможных кинетических явлений наиболее известны в технике два: электропроводность - способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля, и теплопроводность - аналогично по отношению к разности температур и тепловому потоку. Оба эти явления выражаются (количественно) законами Ома и Фурье соответственно:

j = γ E; ω = k T.

где j - плотность тока, А/м; γ - кинетический коэффициент электрической проводимости (см. в разделе « Диэлектрики», где его название – удельная электрическая проводимость); Е - напряженность электрического поля В/м; ω - плотность теплового потока; Т – разность температур; k – коэффициент теплопроводности.

На практике обычно используют удельное электрическое сопротивление или просто удельное сопротивление, Ом м

ρ = 1 / γ.

Однако, для проводников разрешается пользоваться внесистемной единицей измерения Ом мм2/м, или рекомендуется применять равную по размерности единицу СИ мкОм/м. Переход от одной единицы к другой в этом случае: 1 Ом м = 106 мкОм м = 106 Ом мм2/м. Сопротивление проводника произвольных размеров с постоянным поперечным сечением определятся:

R =ρl / S,

где l – длина проводника, м; S – площадь проводника, м2.

Металлы обычно характеризуются как вещества пластичные с характерным «металлическим» блеском, хорошо проводящие электрический ток и теплоту. Для электропроводности металлов типичны: низкое значение удельного сопротивления при нормальной температуре, значительный рост сопротивления при повышении температуры, достаточно близкий к прямой пропорциональности; при понижении температуры до температуры, близких к абсолютному нулю, сопротивление металлов уменьшается до очень малых значений, составляющих для наиболее чистых металлов до 10-3 или даже меньшую долю сопротивления при нормальных, + 20 0С, температурах. Для них также характерно наличие связи между удельной электропроводностью и удельной теплопроводностью, которая описывается эмпирическим законом Видемана – Франца, как отношение k / γ приближенно одинаково для разных материалов при одинаковой температуре. Частное от деления k / γ на абсолютную температуру T (L0 = k / (γ T)). называется числом Лоренца, является (для всех металлов) величиной мало отличающихся при всех температурах.

 








Дата добавления: 2015-12-10; просмотров: 993;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.