Практические занятия. Цель занятий — изучить анатомическое, и гистологическое строение нервного волокна, спинного и головного мозга; исследовать глазные и сухожильные рефлексы
Цель занятий — изучить анатомическое, и гистологическое строение нервного волокна, спинного и головного мозга; исследовать глазные и сухожильные рефлексы человека.
Оснащение — таблицы, атлас, микропрепараты головного мозга, поперечный срез спинного мозга, поперечный срез продолговатого мозга, микроскоп, перкусионный молоточек.
Содержание работы. Учащийся должен знать: 1) особенности строения нервной системы; 2) строение спинного и головного мозга;
3) строение периферической нервной системы; 4) физиологию коры головного мозга; 5) препараты, отражающие гистологическое строение нервного волокна, спинного и головного мозга; 6) как определить зрительный и сухожильный рефлексы у человека.
Оформление протокола. Нарисовать: а) общий план строения мозга в сагиттальном разрезе; б) схему желудочков головного мозга; в) схему поперечного среза спинного и продолговатого мозга. Нанести соответствующие обозначения. Записать результаты проведения зрительного, коленного и ахиллова рефлексов, датьим объяснение.
ОРГАНЫ ЧУВСТВ
Органы чувств — это анатомические образования, которые воспринимают внешние раздражения (звук, свет, запах, вкус и др.), трансформируют их в нервный импульс и передают его в головной мозг.
Живой организм постоянно получает информацию об изменениях, которые происходят за его пределами и внутри организма, а также из всех частей тела. Раздражения из внешней и внутренней среды воспринимаются специализированными элементами, которые определяют специфику того или иного органа чувств и называются рецепторами.
Органы чувств служат живому организму для взаимосвязи и приспособления к постоянно изменяющимся условиям окружающей среды и ее познания.
Согласно учению И. П. Павлова, каждый анализатор является сложным комплексным механизмом, который не только воспринимает сигналы из внешней среды, но и преобразует их энергию в нервный импульс, проводит высший анализ и синтез.
Каждый анализатор представляет собой сложную систему, которая включает следующие звенья: 1) периферический прибор, который воспринимает внешнее воздействие (свет, запах, вкус, звук, прикосновение) и преобразует его в нервный импульс; 2) проводящие пути, по которым нервный импульс поступает в соответствующий корковый нервный центр; 3) нервный центр в коре большого мозга (корковый конец анализатора). Все анализаторы делятся на два типа. Анализаторы, осуществляющие анализ и синтез окружающей среды, называются внешними или экстерорецептивны-ми. К ним относятся зрительный, слуховой, обонятельный, тактильный и др. Анализаторы, осуществляющие анализ явлений, которые происходят внутри организма, называются внутренними или интерорецептивными. Они дают информацию о состоянии сердечно-сосудистой, пищеварительной систем, органов дыхания и др. Одним из главных внутренних анализаторов является двигательный анализатор, который дает информацию в мозг о состоянии мышечно-суставного аппарата. Его рецепторы имеют сложное строение и расположены в мышцах, сухожилиях и суставах.
Известно, что некоторые анализаторы занимают промежуточное положение, например вестибулярный анализатор. Он находится внутри организма (внутреннее ухо), но возбуждается внешними факторами (ускорение и замедление вращательных и прямолинейных движений).
Периферическая часть анализатора превращает определенные виды энергии в нервное возбуждение, при этом для каждого из них существует собственная специализация (холод, тепло, запах, звук и т. д.).
Таким образом, при помощи органов чувств человек получает всю информацию об окружающей среде, изучает ее и дает соответствующий ответ на реальные воздействия.
Орган зрения
Орган зрения — один из главных органов чувств, он играет значительную роль в процессе восприятия окружающей среды. В многообразной деятельности человека, в исполнении многих самых тонких работ органу зрения принадлежит первостепенное значение. Достигнув совершенства у человека, орган зрения улавливает световой поток, направляет его на специальные светочувствительные клетки, воспринимает черно-белое и цветное изображение, видит предмет в объеме и на различном расстоянии.
Орган зрения расположен в глазнице и состоит из глаза и вспомогательного аппарата (рис. 144).
Рис. 144. Строение глаза (схема):
1 — склера; 2 — сосудистая оболочка; 3 — сетчатка; 4 — центральная ямка; 5 — слепое пятно; 6 — зрительный нерв; 7— конъюнктива; 8— цилиар-ная связка; 9—роговица; 10—зрачок; 11, 18— оптическая ось; 12 — передняя камера; 13 — хрусталик; 14 — радужка; 15 — задняя камера; 16 — ресничная мышца; 17— стекловидное тело
Глаз (oculus) состоит из глазного яблока и зрительного нерва с его оболочками. Глазное яблоко имеет округлую форму, передний и задний полюсы. Первый соответствует наиболее выступающей части наружной фиброзной оболочки (роговицы), а второй — наиболее выступающей части, которая находится латеральное выхода зрительного нерва из глазного яблока. Линия, соединяющая эти точки, называется наружной осью глазного яблока, а линия, соединяющая точку на внутренней поверхности роговицы с точкой на сетчатке, получила название внутренней оси глазного яблока. Изменения соотношений этих линий вызывают нарушения фокусировки изображения предметов на сетчатке, появление близорукости (миопия) или дальнозоркости (гиперметропия).
Глазное яблоко состоит из фиброзной и сосудистой оболочек, сетчатки и ядра глаза (водянистая влага передней и задней камер, хрусталик, стекловидное тело).
Фиброзная оболочка — наружная плотная оболочка, которая выполняет защитную и светопроводящую функции. Передняя ее часть называется роговицей, задняя — склерой. Роговица — это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы — 12 мм, толщина — около 1 мм.
Склера состоит из плотной волокнистой соединительной ткани, толщиной около 1 мм. На границе с роговицей в толще склеры находится узкий канал — венозный синус склеры. К склере прикрепляются глазодвигательные мышцы.
Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственной сосудистой оболочки, ресничного тела и радужки. Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры, срастается рыхло с наружной оболочкой; между ними находится околососудистое пространство в виде узкой щели.
Ресничное тело напоминает среднеутолщенный отдел сосудистой оболочки, который лежит между собственной сосудистой оболочкой и радужкой. Основу ресничного тела составляет рыхлая соединительная ткань, богатая сосудами и гладкими мышечными клетками. Передний отдел имеет около 70 радиально расположенных ресничных отростков, которые составляют ресничный венец. К последнему прикрепляются радиально расположенные волокна ресничного пояса, которые затем идут к передней и задней поверхности капсулы хрусталика. Задний отдел ресничного тела — ресничный кружок — напоминает утолщенные циркулярные полоски, которые переходят в сосудистую оболочку. Ресничная мышца состоит из сложнопереплетенных пучков гладких мышечных клеток. При их сокращении происходят изменение кривизны хрусталика и приспособление к четкому видению предмета (аккомодация).
Радужка — самая передняя часть сосудистой оболочки, имеет форму диска с отверстием (зрачком) в центре. Она состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно.
В радужке различают переднюю поверхность, которая формирует заднюю стенку передней камеры глаза, и зрачковый край, который офаничивает отверстие зрачка. Задняя поверхность радужки составляет переднюю поверхность задней камеры глаза, ресничный край соединяется с ресничным телом и склерой при помощи гребенчатой связки. Мышечные волокна радужки, сокращаясь или расслабляясь, уменьшают или увеличивают диаметр зрачков.
Внутренняя (чувствительная) оболочка глазного яблока — сетчатка — плотно прилегает к сосудистой. Сетчатка имеет большую заднюю зрительную часть и меньшую переднюю «слепую» часть, которая объединяет ресничную и радужковую части сетчатки. Зрительная часть состоит из внутренней пигментной и внутренней нервной частей. Последняя имеет до 10 слоев нервных клеток. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выполняют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.
На заднем отделе сетчатки находится место выхода зрительного нерва — диск зрительного нерва, а латеральное от него располагается желтоватое пятно. Здесь находится наибольшее количество колбочек; это место является местом наибольшего видения.
В ядро глаза входят передняя и задняя камеры, заполненные водянистой влагой, хрусталик и стекловидное тело. Передняя камера глаза — это пространство между роговицей спереди и передней поверхностью радужки сзади. Место по окружности, где находится край роговицы и радужки, ограничено гребенчатой связкой. Между пучками этой связки расположено пространство радужно-роговичного узла (фонтановы пространства). Через эти пространства водянистая влага из передней камеры оттекает в венозный синус склеры (шлеммов канал), а затем поступает в передние ресничные вены. Через отверстие зрачка передняя камера соединяется с задней камерой глазного яблока. Задняя камера в свою очередь соединяется с пространствами между волокнами хрусталика и ресничным телом. По периферии хрусталика лежит пространство в виде пояска (петитов канал), заполненное водянистой влагой.
Хрусталик — это двояковыпуклая линза, которая расположена сзади камер глаза и обладает светопреломляющей способностью. В нем различают переднюю и заднюю поверхности и экватор. Вещество хрусталика бесцветное, прозрачное, плотное, не имеет сосудов и нервов. Внутренняя его часть — ядро — намного плотнее периферической части. Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к которой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.
Стекловидное тело — это желеобразная прозрачная масса, которая не имеет сосудов и нервов и покрыта мембраной. Расположено оно в стекловидной камере глазного яблока, сзади хрусталика и плотно прилегает к сетчатке. Сбоку хрусталика в стекловидном теле находится углубление, называемое стекловидной ямкой. Преломляющая способность стекловидного тела близка к таковой водянистой влаги, которая заполняет камеры глаза. Кроме того, стекловидное тело выполняет опорную и защитную функции.
Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока (рис. 145), фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока.
Рис. 145. Мышцы глазного яблока:
А — вид с латеральной стороны: 1 — верхняя прямая мышца; 2 — мышца, поднимающая верхнее веко; 3 — нижняя косая мышца; 4 — нижняя прямая мышца; 5 — латеральная прямая мышца; Б — вид сверху: 1 — блок; 2 — влагалище сухожилия верхней косой мышцы; 3 — верхняя косая мышца; 4— медиальная прямая мышца; 5 — нижняя прямая мышца; 6 — верхняя прямая мышца; 7 — латеральная прямая мышца; 8 — мышца, поднимающая верхнее веко
Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза относятся к поперечнополосатым мышцам и сокращаются произвольно.
Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы, которая в области зрительного канала и верхней глазничной щели срастается с твердой оболочкой головного мозга. Глазное яблоко покрыто оболочкой (или теноновой капсулой), которая рыхло соединяется со склерой и образует эписклеральное пространство. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.
Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании — полностью его закрывают. Веки имеют переднюю и заднюю поверхность и свободные края. Последние, соединившись спайками, образуют медиальный и латеральные углы глаза. В медиальном углу находятся слезное озеро и слезное мясцо. На свободном крае верхнего и нижнего век около медиального угла видно небольшое возвышение — слезный сосочек с отверстием на верхушке, которая является началом слезного канальца.
Пространство между краями век называется глазной щелью. Вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей, а с внутренней стороны — конъюнктивой века, которая затем переходит в конъюнктиву глазного яблока. Углубление, которое образуется при переходе конъюнктивы век на глазное яблоко, называется конъюнктивальным мешком. Веки, кроме защитной функции, уменьшают или перекрывают доступ светового потока.
На границе лба и верхнего века находится бровь, представляющая собой валик, покрытый волосами и выполняющий защитную функцию.
Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей. Слезная железа находится в одноименной ямке в латеральном углу, у верхней стенки глазницы и покрыта тонкой соединительно-тканной капсулой. Выводные протоки (их около 15) слезной железы открываются в конъюнктивальный мешок. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальцы, которые открываются в слезный мешок. Последний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жидкость попадает в полость носа.
Проводящие пути зрительного анализатора (рис. 146). Свет, который попадает на сетчатку, проходит вначале через прозрачный светопреломляющий аппарат глаза: роговицу, водянистую влагу передней и задней камер, хрусталик и стекловидное тело. Пучок света на своем пути регулируется зрачком. Светопреломляющий аппарат направляет пучок света на более чувствительную часть сетчатки — место наилучшего видения — пятно с его центральной ямкой. Пройдя через все слои сетчатки, свет вызывает там сложные фотохимические преобразования зрительных пигментов. В результате этого в светочувствительных клетках (палочках и колбочках) возникает нервный импульс, который затем передается следующим нейронам сетчатки — биполярным клеткам (нейроцитам), а после них — нейроцитам ганглиозного слоя, ганглиозным нейроцитам. Отростки последних идут в сторону диска и формируют зрительный нерв. Пройдя в череп через канал зрительного нерва по нижней поверхности головного мозга, зрительный нерв образует неполный зрительный перекрест. От зрительного перекреста начинается зрительный тракт, который состоит из нервных волокон ганглиозных клеток сетчатки глазного яблока. Затем волокна по зрительному тракту идут к подкорковым зрительным центрам: латеральному коленчатому телу и верхним холмикам крыши среднего мозга. В латеральном коленчатом теле волокна третьего нейрона (ганглиозных нейроцитов) зрительного пути заканчиваются и вступают в контакт с клетками следующего нейрона. Аксоны этих нейроцитов проходят через внутреннюю капсулу и достигают клеток затылочной доли около шпорной борозды, где и заканчиваются (корковый конец зрительного анализатора). Часть аксонов ганглиозных клеток проходит через коленчатое тело и в составе ручки поступает в верхний холмик. Далее из серого слоя верхнего холмика импульсы идут в ядро глазодвигательного нерва и в дополнительное ядро, откуда происходит иннервация глазодвигательных мышц, мышц, которые суживают зрачки, и ресничной мышцы. Эти волокна несут импульс в ответ на световое раздражение и зрачки суживаются (зрачковый рефлекс), также происходит поворот в необходимом направлении глазных яблок.
Рис. 146. Схема строения зрительного анализатора:
1 — сетчатка; 2— неперекрещенные волокна зрительного нерва; 3 — перекрещенные волокна зрительного нерва; 4— зрительный тракт; 5— корковый анализатор
Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул — хромолипо-протеинов. В качестве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Последние всегда находятся в форме 11-цисретиналя и в норме связываются с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин, который через ряд промежуточных стадий вновь подвергается расщеплению на ретиналь и опсин. При этом молекула теряет цвет и этот процесс называют выцветанием. Схема превращения молекулы родопсина представляется следующим образом.
Процесс зрительного возбуждения возникает в период между образованием люми- и метародопсина II. После прекращения воздействия света родопсин тотчас же ресинтезируется. Вначале полностью при участии фермента рети-нальизомеразы транс-ретиналь превращается в 11-цисретиналь, а затем последний соединяется с опсином, вновь образуя родопсин. Этот процесс беспрерывный и лежит в основе темновой адаптации. В полной темноте необходимо около 30 мин, чтобы все палочки адаптировались и глаза приобрели максимальную чувствительность. Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика.
При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.
Преломляющую силу оптической системы глаза выражают в диоптриях («Д» — дптр). За 1 Д принимается сила линзы, фокусное расстояние которой составляет 1 м. Преломляющая сила глаза человека составляет 59 дптр при рассмотрении далеких предметов и 70,5 дптр при рассмотрении близких.
Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия; старческая дальнозоркость, или пресбиопия (рис. 147). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости (миопии) лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вогнутые линзы с отрицательными диоптриями.
Рис. 147. Ход лучей света в нормальном глазу (А), при близорукости
(Б1 и Б2), при дальнозоркости (В1 и В2) и при астигматизме (Г1 и Г2):
Б2, В2 — двояковогнутая и двояковыпуклая линзы для исправления дефектов близорукости и дальнозоркости; Г2 — цилиндрическая линза для коррекции астигматизма; 1 — зона четкого видения; 2 — зона размытого изображения; 3 — корректирующие линзы
При дальнозоркости (гиперметропии) глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями.
Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока.
Исправлять это нарушение рефракции можно с помощью двояковыпуклых линз. Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только при зрении одновременно двумя глазами возможно восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.
Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 мин, или 1 единице.
Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.
Поле зрения — это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.
Цветоощущение — способность глаза различать цвета. Благодаря этой зрительной функции человек способен воспринимать около 180 цветовых оттенков. Цветовое зрение имеет большое практическое значение в ряде профессий, особенно в искусстве. Как и острота зрения, цветоощущение является функцией колбочкового аппарата сетчатки. Нарушения цветового зрения могут быть врожденными и передаваться по наследству и приобретенными.
Нарушение цветового восприятия носит название дальтонизма и определяется с помощью псевдоизохроматических таблиц, в которых представлена совокупность цветных точек, образующих какой-либо знак. Человек с нормальным зрением легко различает контуры знака, а дальтоник нет.
Дата добавления: 2015-12-08; просмотров: 821;