Перестановки з повтореннями та без повторення. 2 страница
|
|
|
= +
ромб
Схема № 1. Структура означення через найближчий рід та видову відмінність.
3. Аксіоми. Теореми. Ознаки.
3. У математиці доволі часто доводиться формулювати, а потім і доводити, певні твердження. Серед них виділяють принаймні дві групи тверджень. До першої відносять аксіоми, під якими розуміють твердження, справедливість яких приймається без доведення. Як правило, аксіоми використовуються при побудові математичних теорій. При цьому використовують не одну, а цілу систему аксіом, яка повинна задовольняти певні вимоги (повнота, несуперечливість, незалежність). Більш детально з аксіомами та вимогами до системи аксіом ми будемо знайомитися при подальшому вивченні курсу математики у внз. Так, із шкільного курсу геометрії відомо про систему аксіом геометрії, яка містить п’ять груп аксіом. Не можна стверджувати, що аксіоми не потребують доведення в силу своєї очевидності. Наприклад, історія розвитку геометрії дає підстави твердити, що протягом кількох століть вчені не припиняли спроб довести аксіому паралельності, тобто її істинність була далеко неочевидною. Так само, далеко неочевидними є значна частина аксіом, які використовуються при побудові інших математичних теорій. Таким чином, аксіома – це твердження, яке приймається без доведення, але його справедливість перевірена багатовіковим досвідом людства, причому воно весь час виявлялося істинним.
Другу групу складають твердження, які прийнято називати теоремами. Кожна теорема потребує доведення. Існують різні види теорем. Так, теореми існування доводяться для того, щоб показати, що певний математичний об’єкт існує. Теореми єдиності засвідчують однозначність того чи іншого математичного об’єкту, наприклад теореми про єдиність (однозначність) арифметичних операцій, без яких не можна було одержувати однакові результати цих операцій. Теореми, які називають ознаками, дають можливість відносити той чи інший об’єкт до певного класу або робити висновки, не виконуючи певних дій. Так, наприклад, говорять про ознаки паралельності прямих, про ознаки паралелограма, про ознаки подільності чисел тощо.
МОДУЛЬ 2: «Висловлення. Предикати. Теореми.».
Змістовний модуль 2.2. «Висловлення та предикати.».
ПЛАН.
1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
8. Логічні формули. Порядок виконання логічних операцій у формулах. Рівносильні формули. Тотожньо істинні формули (логічні закони).
Література.
[1] – с. 51-92. [2] – с. 3-11, 96-126. [3] – с. 79-168.
1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
1. Як люди передають свої судження в повсякденному житті? - усно чи письмово за допомогою речень. Які речення ви знаєте? - окличні, запитальні, стверджувальні. Чому стверджувальні речення займають особливе місце у спілкуванні між людьми? - бо вони містять певну інформацію і відносно них можна стверджувати істинні вони чи хибні. Наведіть приклади стверджувальних речень! З'ясуйте істинні вони чи хибні? - такі речення називають висловленнями. Вони є об'єктом вивчення математичної логіки галузі математики, яку називають математичною логікою. Чи є запитальні і окличні речення висловленнями? – ні, бо про них не можна сказати, що вони істинні або хибні.
Як же позначають висловлення? – малими буквами латинського алфавіту. Прикладом висловлень можуть бути такі: а=„Київ – столиця України”, в=„Іваненко – студент”. У математичній логіці висловлення розглядають лише з точки зору їх істинності чи хибності, абстрагуючись від конкретного їх змісту. А де розглядаються висловлення з точки зору їх змісту? – у мові. Отже, висловлення є своєрідною величиною, яка може приймати два значення – „істинне” або „хибне”. Якщо висловлення „а” істинне, то це позначають так а=1, а якщо хибне - то в=0.
Які б висловлення ви назвали простими? – ті, з яких не можна виділити більш простих висловлень. Які висловлення називаються складеними? - ті, із яких можна виділити принаймні два простих висловлення.
Означення: два складених висловлення називаються рівносильними, якщо вони одночасно істинні або одночасно хибні при будь-яких припущеннях про істинність висловлень, що входять до нього.
Символічно це позначають так: аºв.
2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
2. Чим відрізняється математична мова від звичайної? – наявністю змінних. Що станеться, якщо у висловлення ввести змінну? – воно буде мати вигляд речення зі змінною, про яке ми не зможемо сказати істинне воно чи хибне, наприклад, „х - студент”. Як з нього зробити висловлення? – підставити замість змінної х прізвище. Отже, в математичній логіці є речення, які містять змінну, заміна якої назвою деякого об'єкта перетворює його у висловлення. Їх прийнято називати предикатами з однією змінною. Термін «предикат» латинського походження, а тому його дослівний переклад з латинської мови означає присудок.
А чи можуть бути предикати з кількома змінними? – так. Чим можна замінити змінну в предикаті? – назвою конкретного предмета. А чи всяке значення може набувати змінна? – ні, таким чином, для кожного предиката слід вказати множину значень змінної. Цю множину називають областю визначення предиката. Залежно від кількості змінних предикати називають і позначають по-різному. Так, предикати, які містять одну змінну, прийнято позначати великими буквами латинського алфавіту та називати одномісними предикатами. Наприклад: А(х), В(х) тощо, а область його визначення в загальному випадку позначають Х. А(х): «х - студент», де хÎ Х. Символічний запис А(х), хÎХ читають так: на множині Х задано предикат А(х)”. Якщо х=а, то висловлення, яке отримуємо з предиката А(х) при заміні х на а, позначають А(а). Крім предикатів, що містять одну змінну, розглядають предикати, які містять дві, три, чотири або будь-яке скінченне число змінних. Їх позначають відповідно А(х;у), В(х;у;z), С(х;у;z;v), D(х1, х2, х3,…,хn). Що ж характеризують предикати? – одномісні предикати характеризують властивості об'єктів, а двомісні, тримісні тощо – відношення між об’єктами. Прикладами предикатів будуть рівняння, нерівності. Наприклад: „х>у”, „х=у”, ”х^у”, 2х+3у=7. Як із двохмісного предиката одержати висловлення? – замінити назвами конкретних предметів вже дві змінних. Аналогічно можна одержувати висловлення із тримісних, чотиримісних тощо предикатів.
Яких значень може набувати предикат після того, як замість змінної підставлено назву конкретного об’єкту? – 0 або 1. На які дві підмножини можна поділити область визначення Х предиката А(х)? - 1) на множину істинності, до якої входять всі ті хєХ, при підстановці яких у предикат він перетворюється в істинне висловлення. Її позначають ТА; 2) на множину хибності предиката, яка містить ті значення хєХ, при підстановці яких у предикат ми отримуємо хибне висловлення. А чи можуть предикати набувати однакові значення істинності при певних значеннях змінної? – відповідь на це запитання дає наступне означення.
Означення: Два предиката А(х) і В(х) називаються рівносильними або еквівалентними, якщо вони визначені на одній множині Х і мають однакові множини істинності.
Символічно це записують так: (А(х)~В(х), хÎХ)↔(ТА=ТВ).
Ми вже зазначали, що для одержання висловлення із предиката, слідзамінити змінну (чи змінні) назвою конкретного предмета. Таку операцію перетворення предиката у висловлення прийнято називати операцією підстановки предметної змінної. А чи є інші операції для перетворення предиката у висловлення? – виявляється, що є, але для цього спочатку введемо два нових поняття.
У повсякденному житті та мові, в математиці досить часто зустрічаються слова чи словосполучення: «існує такий (така, таке, такі)», «є такий (така, таке, такі)». У математичній логіці існують операції над предикатами, які певним чином відповідають цим словам чи словосполученням. З’ясуємо їхню сутність. Розглянемо на множині Х предикат А(х). Нехай властивість А мають деякі хÎХ. За допомогою висловлювання: „існує таке х, що має властивість А(х)” ми із предиката можемо одержати істинне або хибне висловлення. Наприклад, для предиката А(х):«х - місто» з допомогою слова «існує» ми отримуємо висловлення: «існує таке х, що є містом». Отже, маємо істинне висловлення. Вираз „існує х таке, що...” називається квантором існування і позначається символом ($хєХ). Символічний запис ($хєХ)А(х) читають так: „Існує х таке, що має властивість А(х)”. Дописування спереду до предиката квантора існування називається операцією навішування квантора або операцією зв'язування квантором, або операцією квантифікації. Таким чином, ці операції дозволяють одержувати із предиката істинні чи хибні висловлення. Змінна, яка зв'язується квантором, називається зв'язаною змінною. Отже, для перетворення предиката у висловлення можна використовувати дві операції: а) операцію підстановки предметної змінної; б) операцію навішування квантора. Зрозуміло, що у двомісному, тримісному тощо предикаті слід використати цю операцію стільки разів, скільки є у ньому змінних, тобто навісити квантор два, три тощо разів.
Означення: квантором існування називається така операція $, яка кожному одномісному предикату А(х), визначеному на множині Х, ставить у відповідність одне і тільки одне висловлення ($хєХ)А(х), яке буде істинним тоді і тільки тоді, коли існує хоча б одне аєХ таке, що А(а)=1.
У повсякденному житті та мові, в математиці досить часто зустрічаються слова чи словосполучення: «всі», «будь-який», «для всіх», «для кожного» тощо. У математичній логіці існують операції над предикатами, які певним чином відповідають цим словам чи словосполученням. З’ясуємо їхню сутність. Розглянемо на множині Х предикат А(х). Нехай властивість А(х) мають всі хєХ. Тоді за допомогою виразу „для всіх х” ми перетворимо предикат А(х) у висловлення. Вираз „для всіх х...” називається квантором загальності і позначається так ("хєХ). Символічний запис ("хєХ)А(х) читають так: для всіх (для любого) хєХ справедлива властивість А.
Означення: квантором загальності називається така операція ", яка кожному одномісному предикату А(х), визначеному на множині Х, ставить у відповідність одне і тільки одне висловлення ("хєХ)А(х), яке буде істинним тоді і тільки тоді, коли для кожного аєХ маємо А(а)=1.
Так само, як і у випадку з квантором існування, дописування спереду до предиката квантора загальності називається операцією навішування квантора або операцією зв'язування квантором, або операцією квантифікації. Таким чином, ці операції дозволяють одержувати із предиката істинні чи хибні висловлення. Змінна, яка зв'язується квантором, називається зв'язаною змінною. Отже, для перетворення предиката у висловлення можна використовувати три операції: а) операцію підстановки предметної змінної; б) операцію навішування квантора існування; в) операцію навішування квантора загальності. Зрозуміло, що у двомісному, тримісному тощо предикаті слід використати ці операції стільки разів, скільки є у ньому змінних, тобто навісити квантор два, три тощо разів.
Виявляється, що між кванторами існування та загальності є певний зв'язок. Для виявлення його сутності розглянемо предикат А(х;у):„х║у” на множині прямих Х. Утворимо за допомогою кванторів існування та загальності наступні висловлення: 1) ("хєХ)("уєХ)А(х;у): «для кожної прямої х і для кожної прямої у в множині прямих Х маємо х║у». Це висловлення хибне; 2) ("уєХ)("хєХ)А(х;у): «для кожної прямої у і для кожної прямої х в множині прямих Х маємо х║у». Це висловлення хибне; 3) ($хєХ)($уєХ)А(х;у): «існує пряма х і існує пряма у в множині прямих Х, що х║у». Це висловлення істинне; 4) ($уєХ)($хєХ)А(х;у): «існує пряма у і існує пряма х в множині прямих Х, що х║у». Це висловлення також істинне; 5) ($хєХ)("уєХ)А(х;у): «існує така пряма х, що для кожної прямої у із множини прямих Х, маємо х║у». Це висловлення хибне; 6) ("уєХ)($хєХ)А(х;у): «для всякої прямої у в множині прямих Х існує пряма х така, що х║у». Це висловлення істинне; 7) ("хєХ)($уєХ)А(х;у): «для всякої прямої х в множині прямих Х існує пряма х така, що х║у». Це висловлення істинне; 8) ($уєХ)("хєХ)А(х;у): «існує пряма у в множині прямих Х, така, що для всякої прямої х маємо, що х║у». Це висловлення істинне.
Розглянутий приклад засвідчує, що переставляння місцями однойменних кванторів не призводить до утворення нового висловлення. Разом з тим, переставляння місцями різнойменних кванторів може призводити до утворення відмінного не тільки за змістом, а й за значенням істинності висловлення. Усе сказане нами про застосування кванторів до двомісних предикатів переноситься на випадок предикатів довільної розмірності.
3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
3. У звичайній мові для утворення речення, зміст якого є протилежним до даного, використовують частку «не» або словосполучення «неправильно, що…». Так само досить часто вони використовуються у математичних твердженнях. Цій частці чи словосполученню у математичній логіці певним чином відповідає операція заперечення, сутність якої розкриємо спочатку на такому прикладі. Розглянемо висловлення: а=„Річка Устя – притока Горині”. Це висловлення є істинним. Утворимо хибне висловлення: „річка Устя - не притока Горині” або «неправильно, що річка Устя - притока Горині». Одержане висловлення по відношенню до даного називають запереченням висловлення „а” і позначають символом „ā”. Символічний запис ā можна прочитати так: „заперечення висловлення а”, „не-а”, „неправильно, що а”. Введемо математичне означення цього поняття.
Означення: запереченням даного висловлення „а” називають таке нове висловлення „ā”, яке істинне тоді, коли висловлення а хибне, і хибне тоді – коли висловлення а істинне.
Операцію заперечення можна задати за допомогою таблиці, яку в математичній логіці називають таблицею істинності (див. таблицю № 22). Таким чином, щоб отримати із даного висловлення його заперечення слід поставити перед висловленням слово „неправильно” чи поставити перед присудком частку „не”. Отже, операція заперечення досить адекватно передає зміст вживання частки „не” в практиці розмовної і писемної мови.
а | ā |
Таблиця № 22. Таблиця істинності заперечення висловлення.
А чи можна так само утворити заперечення предиката? – покажемо це на такому прикладі. Розглянемо предикат: А(х)=„х – просте число”, хÎN. Утворимо його заперечення: „неправильно, що х – просте число”. Наведемо означення цього поняття.
Означення: запереченням даного предиката А(х) називають такий новий предикат Ā(х), який визначений на тій самій множині Х і який істинний при всіх таких хÎХ, при яких предикат А(х) істинний, а хибний при всіх тих хєХ, при яких предикат А(х) істинний.
Досить важливим для математичної логіки є питання про визначення множини істинності предикатів. З’ясуємо це питання по відношенню до даного предиката А(х) і його заперечення Ā(х). Нехай Х – це область визначення предиката А(х). Позначимо через ТА множину істинності предиката А(х), а через Т`А – множину істинності предиката Ā(х). Чим буде множина Т`А по відношенню до множини ТА? – доповненням множини ТА до множини Х, тобто, знаючи множину істинності ТА предиката А(х), можна легко знайти множину істинності Т`А заперечення даного предиката. Отже, справедлива наступна рівність: Т`А=ŤА. За допомогою діаграм Ейлера-Венна це можна зобразити так (див. таблицю № 23):
|
Таблиця № 23. Множина істинності Т`А заперечення даного предиката Ā(х).
Операція заперечення висловлень та заперечення предикатів підкоряються закону подвійного заперечення (див. таблицю № 24). У справедливості першого із них легко переконатися, побудувавши таблицю істинності. Справедливість другого ілюструється на діаграмі Ейлера-Венна. Пропонуємо студентам переконатися в цьому самостійно, виконавши відповідні завдання для самостійної роботи.
Закон подвійного заперечення для висловлень. | Закон подвійного заперечення для предикатів. |
ā=а. | Ā(х)=А(х). |
Таблиця № 24. Закон подвійного заперечення.
4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
4.1. Операція кон'юнкції висловлень.
4.1. За допомогою яких слів в мові з одних простих речень можна утворювати складні? – не, і, або, якщо,… то, тоді і тільки тоді, необхідно і достатньо тощо. Як же в математичній логіці із простих висловлень буде утворювати складені? – за допомогою певних операцій (одну із яких, заперечення ми вже розглянули), які певним чином відповідатимуть названим словам або словосполученням. Розглянемо два висловлення: а=„число 2 - просте” і в=„число 2 – парне”. Утворимо з цих двох простих висловлень за допомогою сполучника „і” нове висловлення і з'ясуємо його істинність: „число 2 – просте і парне”. Воно істинне. У математичній логіці таке нове висловлення називають кон'юнкцією (грецьк. сonjunctio” - зв'язок, союз) даних висловлень і позначають так: аÙb. Символічний запис аÙb читають так: „а і b”, або „а в кон'юнкції з b”, або „кон'юнкція а і b”. Тепер сформулюємо строге математичне означення цієї операції над висловленнями.
Означення: кон'юнкцією двох висловлень а і b називають таке нове висловлення аÙb, яке істинне тоді і тільки тоді, коли істинні обидва висловлення а і b.
Інколи означення формулюють і так: «кон'юнкцією двох висловлень а і b називають таке нове висловлення аÙb, яке хибне тоді і тільки тоді, коли хибне хоча б одне із висловлень а і b». Легко довести, що обидва ці означення рівносильні. Крім цього, означення кон'юнкції двох висловлень можна задати за допомогою таблиці істинності (див. таблицю № 25).
а | в | аÙв |
Таблиця № 25. Таблиця істинності для операції кон’юнкції.
Яку операцію над числами нагадує нам означення кон’юнкції двох висловлень задане таблицею істинності? – операцію множення чисел. Саме тому операцію кон'юнкції називають логічним множенням. Означення операції кон'юнкції двох висловлень можна поширити на три, чотири та на будь-яке скінченне число висловлень. Наприклад: кон’юнкцією висловлень а, b, с називається таке нове висловлення, яке хибне тоді і тільки тоді, коли хибне хоча б одне з висловлень а, b і с, тобто аÙbÙс=(аÙb)Ùс. Враховуючи сказане, зазначимо, що всі твердження, які ми будемо доводити для двох висловлень щодо кон’юнкції, будуть, майже завжди, істинними для будь-якого скінченого числа висловлень.
Безпосередньо із означення кон’юнкції двох висловлень легко переконатися у справедливості таких властивостей (законів): 1) аÙ1=а; 2) аÙ0=0; 3) аÙа=а – закон ідемпотентності. Крім вказаних законів, операція кон’юнкції висловлень підкоряється комутативному (переставному) аÙв=вÙа та асоціативному (сполучному) законам (аÙв)Ùс=аÙ(вÙс), які потребують доведення. Ці закони доводять, використовуючи таблиці істинності. Покажемо це на прикладі асоціативного закону операції кон’юнкції (див. таблицю № 26). Для того, щоб визначити кількість стовпців, слід підрахувати кількість елементарних і складених висловлень у лівій та правій частинах формули. Отже, маємо три елементарних висловлення (а, в, с) та чотири складених висловлення (аÙв, (аÙв)Ùс, вÙс, аÙ(вÙс)), тобто всього буде сім стовпців. Кількість рядків обчислюється за формулою 2ⁿ+1, де n – це кількість елементарних висловлень. Оскільки у формулі n=3, то рядків буде 2³+1=9. Для заповнення трьох перших стовпців зазначимо, що в них слід записати всі можливі варіанти наборів значень істинності елементарних висловлень а, в, с. У другому рядку перших трьох стовпців записуємо нулі, в наступних трьох – по два нулі й одній одиниці. У 6-8 рядках перших трьох стовпців запишемо по одному нулю та по дві одиниці. І, нарешті, в останньому запишемо три одиниці. Інших варіантів наборів значень істинності немає. Для заповнення четвертого стовпця виконаємо кон’юнкцію першого і другого стовпців, а для заповнення п’ятого стовпця – кон’юнкцію третього і четвертого стовпців. Аналогічно заповнюємо шостий і сьомий стовпці.
а | в | С | аÙв | (аÙв)Ùс | вÙс | аÙ(вÙс) |
Таблиця № 26. Доведення асоціативного закону операції кон’юнкції.
Таким чином, щоб переконатися у справедливості асоціативного закону операції кон’юнкції, слід порівняти значення, які містяться у стовпцях, що визначають ліву й праву частині рівності (аÙb)Ùс=аÙ(bÙс). Порівнюючи значення п’ятого і сьомого стовпців, бачимо, що вони приймають однакові значення при всіх наборах значень істинності елементарних висловлень, що входять до їх складу. Отже, права і ліва частина формули (аÙb)Ùс=аÙ(bÙс) набуває однакових значень істинності при всіх наборах значень істинності елементарних висловлень. Це означає, що закон справедливий. Доведення комутативного закону пропонуємо провести самостійно (див. завдання для самостійної роботи студентів).
4.2. Операція кон'юнкції предикатів.
4.2. Як відомо, для одержання висловлення із предиката необхідно замінити змінну (змінні) назвою конкретного предмета, тобто використати спосіб підстановки, або використати операцію навішуванням квантора. А чи можна над предикатами виконувати й інші операції? - так, бо їх можна перетворити у висловлення. Всі предикати також поділяються на прості або елементарні та на складені. Для того, щоб визначити операцію кон’юнкції предикатів, розглянемо на множині абітурієнтів предикати: А(х): „х – склав всі екзамени” і В(х): „х – набрав прохідний бал”. Як можна назвати предикат „х – склав всі екзамени і набрав прохідний бал” - кон'юнкцією заданих предикатів. Отже, приймемо таке означення.
Означення: кон'юнкцією двох предикатів А(х) і В(х), заданих на одній і тій самій множині Х, називається такий новий предикат А(х)ÙВ(х), який визначений на множині Х і який істинний при всіх тих хÎХ, при яких одночасно істинні обидва предикати.
При оперуванні із складенимипредикатами доводиться знаходити їх множини істинності. Знайдемо множину істинності предиката А(х)ÙВ(х). Позначимо область визначення предикатів через Х, множину істинності предиката А(х) через ТА, а множину істинності предиката В(х) – через ТВ. Щоб знайти множину істинності предиката А(х)ÙВ(х), тобто ТАÙВ, на діаграмі Ейлера-Венна заштрихуємо множину істинності предиката А(х) горизонтальними штрихами, а множину істинності предиката В(х) – вертикальними штрихами. Тоді множина істинності предиката А(х)ÙВ(х) буде зображатися тією частиною множини Х, на якій штрихи накладаються (див. таблицю № 3).
|
Таблиця № 3. Множина істинності кон’юнкції предикатів ТАÙВ = ТАÇТВ.
Таким чином, множина істинності предиката А(х)ÙВ(х) є перерізом множин істинності предикатів А(х) і В(х), тобто справедлива рівність ТАÙВ=ТАÇТВ. Операція кон’юнкції предикатів підкоряється тим же самим законам, що і операція кон’юнкції висловлень. Пропонуємо студентам записати відповідні закони самостійно.
5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
5.1. Операція диз’юнкції над висловленнями.
5.1. Розглянемо два висловлення: а=„число 2 просте” і в=„число 2 – парне”. Утворимо з цих двох простих висловлень за допомогою сполучника „або” нове висловлення і з'ясуємо його істинність: „число 2 – просте або парне”. Воно істинне. У математичній логіці таке нове висловлення називають диз'юнкцією (грецьк. disjunction - роз'єднання, розрізнення) даних висловлень і позначають так: аÚb. Символічний запис аÚb читають так: „а або b”, або „а в диз'юнкції з b”, або „диз'юнкція а і b”. Тепер сформулюємо строге математичне означення цієї операції над висловленнями.
Означення: диз'юнкцією двох висловлень а і b називають таке нове висловлення аÚb, яке хибне тоді і тільки тоді коли хибні обидва висловлення.
Крім наведеного означення операцію диз’юнкції можна задати з допомогою іншого означення чи таблиці істинності (див. таблицю № 4).
Дата добавления: 2015-11-04; просмотров: 999;