Теоретическое обоснование метода D-разбиений

 

Изменение параметров САУ, например, с целью оптимизации, приведет к изменению коэффициентов уравнения динамики. Останется ли при этом САУ устойчивой - неизвестно. Критерии устойчивости об этом ничего не говорят. Рассмотрим метод определения границ допустимых изменений параметров, при которых САУ не теряет устойчивости.

Приведем характеристическое уравнение замкнутой САУ к виду:

D(p) = pn + c1 pn -1 + c2 pn-2 + ... + cn = 0,

где c0 = a0 /a0 = 1,c1 = a1 /a0и т.д. При некоторых конкретных значениях c1 ,c2 ,...,cnуравнение имеет единственное решение, то есть единственный набор корней (p1 , p2 ,...,pn ). По их расположению на комплексной плоскости можно судить об устойчивости САУ при заданных параметрах. Если изменить какой-либо параметр САУ, например коэффициента передачи, то изменятся и коэффициенты характеристического уравнения D(p) = 0 и станут равными cн1 ,cн2 ,...,cнn . Уравнение примет вид:

 

Dн(p) = pn + cн1 pn -1 + cн2 pn -2 + ... + cнn = 0.

 

Это уже другое уравнение и оно также имеет единственное решение (pн1 ,pн2 ,...,pнn ), отличающееся от (p1 ,p2 ,...,pn ). Если плавно менять значение параметра САУ, то коэффициенты уравнения тоже будут плавно изменяться, а его корни будут перемещаться по комплексной плоскости (рис.81).

Каждый уникальный набору коэффициентовc1 ,c2 ,...,cn можно изобразить точкой в пространстве коэффициентов, по осям которого откладываются значения коэффициентов c1 ,c2 ,...,cn. Так уравнению третьей степени соответствует трехмерное пространство коэффициентов (рис.82).

Пусть точка N с координатами (cN1 ,cN2,cN3) соответствует уравнению, имеющему решение (pN1,pN2,pN3), точка M с координатами (cM1 ,cM2 ,cM3) соответствует уравнению, имеющему решение (pM1 ,pM2 ,pM3). При изменении какого-либо параметра САУ коэффициенты характеристического уравнения будут изменяться, при этом точка в пространстве коэффициентов, соответствующая данному уравнению будет перемещаться по некоторой траектории, например из положения N в положение M. Этому перемещению будет соответствовать и перемещение корней (pN1,pN2,pN3) на комплексной плоскости в положение (pM1 ,pM2 ,pM3) (аналогично рис.81).

При этом движении некоторые корни будут переходить через мнимую ось комплексной плоскости из левой полуплоскости в правую и наоборот. В момент перехода такой k-й корень примет значение pK = j K, а коэффициенты уравнения будут иметь определенные значения cK1,cK2,cK3, определяющие в пространстве коэффициентов точку K. Подставим корень pK в характеристическое уравнение, получим тождество:

 

D(pK ) = (j K)3 + cK1(j K)2 + cK2 (jK ) + cK3 = 0

Меняя w от - до + , и находя при каждой частоте все возможные сочетания коэффициентов c1 ,c2 ,...,cn , удовлетворяющих уравнению

 

D(j ) = (j )n + c1 (j )n-1 + c2 (j )n-2 + ... + cn = 0,

 

можно построить в n-мерном пространстве коэффициентов сложную поверхность S, разделяющую его на области, называемое D-областями. Полученное уравнение называется уравнением границы D-разбиения.

Переход из одной D-области в другую через поверхность S соответствует переходу одного или нескольких корней через мнимую ось в плоскости корней. То есть каждая точка внутри определенной D-области соответствует уравнению с определенным количеством левых и правых корней. Поэтому области обозначают D(m) по числу m правых корней.

Достаточно взять любую точку в пространстве коэффициентов и найти для нее число правых корней. Затем, двигаясь по пространству коэффициентов через границу S, можно выявить обозначения всех других областей. Особый интерес представляет область D(0), которой соответствуют уравнения с полным отсутствием правых корней, называемая областью устойчивости. Описанный метод определения областей устойчивости называется методом D-разбиений.

Не обязательно строить сложную n-мерную картину D-разбиения, можно изменять значения, например, только двух коэффициентов, оставляя другие коэффициенты постоянными. Границу D-разбиения S можно строить не только также и в пространстве конкретных параметров системы, от которых зависят данные коэффициенты.

 








Дата добавления: 2015-10-19; просмотров: 542;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.