Инерционное звено первого порядка (апериодическое)
Уравнение динамики: , или Tpy + y = ku.
Передаточная функция: W(p) = .
Переходная характеристика может быть получена с помощью формулы Хевисайда:
,
где p1 = - 1/T - корень уравнения D(p) = Tp + 1 = 0; D’(p1) = T.
Переходная характеристика имеет вид экспоненты (рис.45), по которой можно определить передаточный коэффициент k, равный установившемуся значениюh(t), и постоянную времени Т по времени t, соответствующему точке пересечения касательной к кривой в начале координат с ее асимптотой. При достаточно больших Т звено на начальном участке может рассматриваться как интегрирующее, при малых Т звено приближенно можно рассматривать как безынерционное. Примеры апериодического звена: термопара, электродвигатель, четырехполюсник из сопротивления и емкости или сопротивления и индуктивности.
Дата добавления: 2015-10-19; просмотров: 649;