Явно или неявно заданные функции
Если формула, связывающая аргумент x и функцию y, имеет вид
,
то переменная y называется явно заданной функцией переменной x.
Например, явно заданными являются функции , .
Если формула, связывающая аргумент x и функцию у, записана в виде уравнения , то определяемая из этого уравнения переменная называется функцией, заданной неявно.
Пример (неявно заданные функции)
1) Уравнение задает неявно функцию ;
2) уравнение задает неявно функцию ;
3) уравнение задает неявно две функции ;
4) уравнение задает неявно бесконечное множество функций , .
Из примеров видно, что если уравнение удается решить относительно у, то осуществляется переход от неявно заданной функции к ее явному заданию . При этом часто получается многозначная функция, которую всегда можно рассматривать как совокупность однозначных функций (совокупность однозначных ветвей многозначной функции).
Например, ;
,
Однако на практике решить уравнение относительно переменной у получается далеко не всегда или это решение получается слишком громоздким. Например, уравнение нельзя решить относительно y. Поэтому в этих случаях приходится работать с функциями, имеющими только неявное задание.
Замечание (к неявному заданию функций)
В уравнении переменные x и y входят равноправно, поэтому можно считать, что это уравнение задает неявно функцию или функцию .
Например, .
Дата добавления: 2015-10-19; просмотров: 5683;