Пример 3. Равномерно заряженный шар.

Рассмотрим электрическое поле между двумя шаровыми концентрическими электродами (рис.9) - шаровой конденсатор. Под действием взаимного притяжения (-) и (+ ) заря­ды расположатся только на поверхности внутреннего шара и на внутренней поверх­ности внешнего


Рис.9. Рис.10.

электрода. Из условий симметрии очевидно, что заряды на обоих ша­ровых электродах будут распределены равномерно, и что линии напряженности электрического поля могут быть только радиальными прямыми. Выберем в качестве замкнутой поверхности сферу с ра­диусом r, расположенную между электродами и имеющую общий центр с обоими элек­тродами.

По теореме Остроградского-Гаусса

Ф = Е(r)4pr2 = q/e0,

откуда

Е(r)=q/4pe0r2. (*)

Эта формула показывает, что напряжённость поля между электродами за­висит от расстояния r рассматриваемой точки поля от центра внутреннего шара, но не зависит вовсе от размеров внешнего электрода. Ту же напряженность поля получим, если радиус внешнего электрода будет как угодно велик. Роль внешнего электрода могут играть различные удалённые заземлённые предметы, например стены, пол и потолок комна­ты. Поэтому часто говорят просто о поле заряженного шара(рис.10),не указывая, что именно является вторым электродом. Из формулы (*) следует, что электрическое поле шара, равномерно заряженного по поверхности, во внешнем про­странстве совпадает с полем точечного заряда, равного полному заряду шара и помещённого в центре шара. Если бы мы рассмотрели шар, заряженный равномерно по объёму, то напряженность поля тоже выражалась бы формулой (*). Напряженность же поля внутри шара в обоих случаях различна. В случае шара, равномерно заряженного по поверхности Е = О в любой внутренней точке. Если же шар заряжен равномерно по объёму, то Е= 0 только в центре шара и с увеличением расстояния r от центра воз­растает пропорционально r. В справедливости этого можно убедиться также при помощи теоремы Остроградского-Гаусса.

 

 

Пример: «клетка Фарадея».

металл

++++++++++++++++

`Е = 0
+ +

+ +

+ +

+ +

+ + + + + + + + + + + + + + +

Рис.11.

 

 








Дата добавления: 2015-10-19; просмотров: 2255;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.