Пример 1. Равномерно-заряженная плоскость.
Имеется безграничная плоскость, заряженная равномерно с поверхностной плотностью заряда s. Найти напряженность Е(х), где х - расстояние до плоскости.
Из симметрии задачи очевидно, что линии напряженности должны быть направлены симметрично в обе стороны от плоскости ^ ей. В этом случае в качестве замкнутой поверхности в теореме Остроградского-Гаусса удобно выбрать прямой цилиндр, перпендикулярный к заряженной плоскости, ограниченный двумя плоскими основаниями, перпендикулярными к силовым линиям и расположенными по обе стороны заряженной плоскости (рис.7).
Рис. 7. Рис.8.
Т.к. образующие цилиндра параллельны вектору напряженности электрического поля `Е, то поток через боковую поверхность цилиндра равен нулю и поэтому полный поток сквозь цилиндр равен сумме потоков через его основания
Ф =:2ЕS.
Полный заряд, заключенный внутри цилиндра равен Ss. Поэтому применяя теорему О-Г, имеем:
2ЕS =sS/e0, откуда
Е = s/2e0,
т.е. `Е не есть функция расстояния. Следовательно `Е = соnst по величине и по направлению.
Если плотность заряда отрицательная, т.е. (-s), то линии напряжённости имеют противоположное направление.
Пример2.Определим поле между двумя плоскостями, равномерно с одинаковой плотностью заряженными разноимёнными зарядами (плоский конденсатор, рис.8). Считаем плоскости бесконечными.
Заряженная плоскость каждой пластины создаст по обе стороны от себя напряженность поля, выражаемую формулой ±s/2e0. Внутри металлических пластин и вне конденсатора эти поля направлены противоположно и поэтому в сумме дают нуль. Внутри конденсатора эти поля, напротив, направлены одинаково и, складываясь, дают у поверхности пластин напряженность Е = s/e0. В данном частном случае электрическое поле однородно и поэтому его напряженность у поверхности пластин такая же, как и в других точках поля.
Дата добавления: 2015-10-19; просмотров: 923;