Уравнение теплопроводности

Температуру физического тела в произвольной точке с координатами (x, y, z) в момент времени t можно представить в виде функции:

Составим дифференциальное уравнение:

Выражение называется оператором Лапласа.

Тогда составленное нами дифференциальное уравнение принимает вид:

и называется уравнением теплопроводности в пространстве.

В качестве частных случаев рассматривают:

— уравнение теплопроводности в стержне,

— уравнение теплопроводности на плоскости.

В случае рассмотрения уравнения теплопроводности в стержне искомая функция u(x, t) должна удовлетворять записанному выше дифференциальному уравнению, начальному условию и граничным условиям .

В результате решения дифференциального уравнения методом Фурье получим:

Отметим, что распространение тепла в теле называется стационарным, если функция u не зависит от времени t.








Дата добавления: 2015-10-13; просмотров: 459;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.