Решение задачи Коши методом Даламбера
Жан Лерон Д’Ламбер (1717–1783) — французский математик
В случае если длина струны очень велика, то на колебания, возникающие в середине струны, концы струны влияния практически не оказывают. Поэтому, рассматривая колебания бесконечной струны, уравнение
решается только при начальных условиях:
Для нахождения решения введем новые переменные:
Тогда исходное уравнение принимает вид:
Решением этого уравнения будет функция , где j и y - некоторые функции, которые будем считать дважды дифференцируемыми.
Получаем:
Если продифференцировать полученный ответ, получим:
Т.е. .
Далее с использованием начальных условий находим функции j и y.
Проинтегрировав последнее равенство на отрезке [0, x], получаем:
Тогда:
Решение задачи Коши получаем в виде:
Эта формула называется формулой Даламбера.
Дата добавления: 2015-10-13; просмотров: 563;