Решение задачи Коши методом Даламбера

Жан Лерон Д’Ламбер (1717–1783) — французский математик

В случае если длина струны очень велика, то на колебания, возникающие в середине струны, концы струны влияния практически не оказывают. Поэтому, рассматривая колебания бесконечной струны, уравнение

решается только при начальных условиях:

Для нахождения решения введем новые переменные:

Тогда исходное уравнение принимает вид:

Решением этого уравнения будет функция , где j и y - некоторые функции, которые будем считать дважды дифференцируемыми.

Получаем:

Если продифференцировать полученный ответ, получим:

Т.е. .

Далее с использованием начальных условий находим функции j и y.

Проинтегрировав последнее равенство на отрезке [0, x], получаем:

Тогда:

Решение задачи Коши получаем в виде:

Эта формула называется формулой Даламбера.








Дата добавления: 2015-10-13; просмотров: 571;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.