Лекция 15. Элементы современной физики.
План лекции (с защитой проектов)
1 Элементы квантовой электроники. Спонтанное и вынужденное излучение. Лазеры.
2 Элементы квантовой статистики. Понятие о квантовых статистиках Бозе-Эйнштейна и Ферми-Дирака. Электропроводность металлов.
ТЕЗИСЫ
1. Квантовая статистика — раздел статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики. В отличие от исходных положений классической статистической физики, в которой тождественные частицы различимы (частицу можно отличить от всех таких же частиц), квантовая статистика основывается на принципе неразличимости тождественных частиц. При этом оказывается, как будет показано ниже, что коллективы частиц с целым и полуцелым спинами подчиняются разным статистикам.
Явное выражение функции распределения в самом общем виде получил американский физик Д. Гиббс (1839—1903). Оно называется каноническим распределением Гиббса. В квантовой статистике каноническое распределение Гиббса имеет вид l(En) =Ae-En/(kT) (234.3), где А — постоянная, определяемая из условия нормировки к единице, n — совокупность всех квантовых чисел, характеризующих данное состояние.
Идеальный газ из бозонов — бозе-газ — описывается квантовой статистикой Бозе — Эйнштейна. Распределение бозонов по энергиям вытекает из так называемого большого канонического распределения Гиббса (с переменным числом частиц) при условии, что число тождественных бозонов в данном квантовом состоянии может быть любым:
Это распределение называется распределением Бозе — Эйнштейна. Здесь <Ni> — среднее число бозонов в квантовом состоянии с энергией Ei, k — постоянная Больцмана, Т — термодинамическая температура, m — химический потенциал; m не зависит от энергии, а определяется только температурой и плотностью числа частиц. Химический потенциал находится обычно из условия, что сумма всех <Ni> равна полному числу частиц в системе. Здесь m£0, так как иначе среднее число частиц в данном квантовом состоянии отрицательно, что не имеет физического смысла. Он определяет изменение внутренней энергии системы при добавлении к ней одной частицы при условии, что все остальные величины, от которых зависит внутренняя энергия (энтропия, объем), фиксированы.
Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака. Распределение фермионов по энергиям имеет вид
где <Ni>—среднее число фермионов в квантовом состоянии с энергией Ei, m — химический потенциал. В отличие от (235.1) m может иметь положительное значение (это не приводит к отрицательным значениям чисел <Ni>). Это распределение называется распределением Ферми — Дирака (Ei-m)/(kT). Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.
Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов <N(E)> =f(E), где f(E) — функция распределения электронов по состояниям. Из (236.1) следует, что при Т=0К функция распределения <N(E)³1, если E<m0, и <N(E)³0, если E>m0. График этой функции приведен на рис. 312, а. В области энергий от 0 до m0 функция <N(E)> равна единице. При E=m0она скачкообразно изменяется до нуля. Это означает, что при Т=0К все нижние квантовые состояния, вплоть до состояния с энергией E=m0, заполнены электронами, а все состояния с энергией, большей m0, свободны.
Распределение Ферми — Дирака
Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне.
При температурах, отличных от 0 К, функция распределения Ферми — Дирака (236.2) плавно изменяется от 1 до 0 в узкой области (порядка kT) в окрестности ЕF (рис. 312, б). Это объясняется тем, что при T>0 небольшое число электронов с энергией, близкой к EF, возбуждается за счет теплового движения и их энергия становится больше ЕF. Вблизи границы Ферми при E<EF заполнение электронами меньше единицы, а при E>EF — больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т » 300 К и температуре вырождения T0=3•104 К,— это 10-5 от общего числа электронов.
Классическая теория не смогла объяснить также зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе — Эйнштейна, так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным.
Применение статистики Бозе — Эйнштейна к фононному газу — газу из невзаимодействующих бозе-частиц — привело П. Дебая к количественному выводу, согласно которому при высоких температурах, когда T>>TD (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, а при низких температурах, когда T<<TD (квантовая область),— пропорциональна кубу термодинамической температуры: CV~T3. В данном случае TD — характеристическая температура Дебая, определяемая соотношением kTD=hwD где wD — предельная частота упругих колебаний кристаллической решетки. Таким образом, теория Дебая объяснила расхождение опытных и теоретических (вычисленных на основе классической теории) значений теплоемкости твердых тел.
2. В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы — ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Считая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер.
Далее используется приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими электронами заменяется действием на него стационарного электрического поля, обладающего периодичностью кристаллической решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Таким образом, в рамках зонной теории многоэлектронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле — усредненном и согласованном поле всех ядер и электронов.
Энергия внешних электронов может принимать значения в пределах закрашенных на рис. 313 областей, называемых разрешенными энергетическими зонами. Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл: чем больше в кристалле атомов, тем теснее расположены уровни в зоне. Расстояние между соседними энергетическими уровнями в зоне составляет приблизительно 10-22эВ. Так как оно столь ничтожно, то зоны можно считать практически непрерывными, однако факт конечного числа уровней в зоне играет важную роль для распределения электронов по состояниям.
Разрешенные энергетические зоны разделены зонами запрещенных значений энергии, называемыми запрещенными энергетическими зонами. В запрещенных зонах электроны находиться не могут.
Дата добавления: 2015-10-13; просмотров: 1195;