Функциональные последовательности

 

Определение. Если членами ряда являются функции переменой х, то ряд называется функциональным.

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х, при которых ряд сходится.

Совокупность таких значений называется областью сходимости.

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Говорят, что функциональная последовательность сходится к функции на отрезке , если для любого числа и любой точки х из рассматриваемого отрезка существует номер , такой, что неравенство

выполняется при .

При выбранном значении каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Говорят, что функциональная последовательность равномерно сходится к функции на отрезке , если для любого числа существует номер , такой, что неравенство

выполняется при для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции , т.к.

.

Построим графики этой последовательности:

 

 

 

При увеличении числа n график последовательности приближается к оси х.








Дата добавления: 2015-09-29; просмотров: 474;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.