Исследование функции на возрастание и убывание

 

Теорема. 1) Если функция имеет производную на отрезке и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. .

2) Если функция непрерывна на отрезке и дифференцируема на промежутке , причем для , то эта функция возрастает на отрезке .

Доказательство. 1) Если функция возрастает, то при и при . Тогда:

2) Пусть для любых точек и , принадлежащих отрезку , причем . Тогда по теореме Лагранжа находим , .

По условию , следовательно, , т.е. функция возрастает.

Теорема доказана.

Аналогично можно доказать, что если функция убывает на отрезке , то на этом отрезке. Если в промежутке , то убывает на отрезке .

Конечно, данное утверждение справедливо, если функция непрерывна на отрезке и дифференцируема на интервале .

Определение. Функция имеет в точке максимум, если ее значение в этой точке больше значений во всех точках некоторой окрестности, содержащей точку . Функция имеет в точке минимум, если при любом ( может быть и отрицательным).

Оределение. Точки максимума и минимума функции называются точками экстремума.

Теорема. (необходимое условие существования экстремума) Если функция дифференцируема в точке и точка является точкой экстремума функции, то производная функции обращается в нуль в этой точке.

Доказательство. Предположим, что функция имеет в точке максимум (для минимума доказательство аналогично). Тогда при достаточно малых положительных верно неравенство:

, т.е. .

Тогда

.

По определению:

,

т.е. если , но , то , а если , но , то .

А это возможно только в том случае, если при Теорема доказана.

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то отсюда вообще говоря не следует, что в этой точке функция имеет экстремум. Например, функция имеет производную в точке равную нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но не достаточные. Например, и .

Вообще говоря, функция может иметь экстремум в точках, где производная не существует или равна нулю.

Теорема. (Достаточные условия существования экстремума) Пусть функция определена и непрерывна в интервале , содержащим критическую точку , и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки ).

Если при переходе через точку слева направо производная функции меняет знак с “+” на “-“, то в точке функция имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет в точке минимум.

Доказательство. Пусть По теореме Лагранжа: , где .

Тогда: 1) Если , то ; ; . Следовательно

или .

2) Если , то ; ; . Следовательно

или .

Так как ответы совпадают, то в любых точках в некоторой окрестности точки , т.е. – точка максимума. Доказательство теоремы для точки минимума проводится аналогично. Теорема доказана.

На основе вышесказанного можно сформулировать алгоритм для нахождении наибольшего и наименьшего значения функции на отрезке:

Найти критические точки функции.

Найти значения функции в критических точках.

Найти значения функции на концах отрезка.

Выбрать среди полученных значений наибольшее и наименьшее.

 








Дата добавления: 2015-09-29; просмотров: 1114;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.