Свойства непрерывных функций. 1. Если функции f(x) и g(x) непрерывны в точке х0, то их сумма также есть непрерывная функция в точке х0

1. Если функции f(x) и g(x) непрерывны в точке х0, то их сумма также есть непрерывная функция в точке х0. Это свойство справедливо для любого конечного количества слагаемых.

2. Произведение конечного количества непрерывных функций есть функция непрерывная.

3. Частное двух непрерывных функций есть функция непрерывная, если знаменатель в рассматриваемой точке не обращается в нуль.

4. Если функция f(x) непрерывна в точке х0 и то значения функции f(x) в некоторой окрестности точки х0 имеют тот же знак, что и функция

5. Если функция непрерывна в точке х0 и принимает в этой точке значение а функция f(u) непрерывна в точке то сложная функция в точке х0 непрерывна.

6. Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

7. Если непрерывная на некотором отрезке функция f(x) принимает на его концах значения разных знаков, то на этом отрезке найдется хотя бы одна точка, в которой функция

8. Если функция f(x) непрерывна в точке х0, то операции вычисления предела в этой точке и функции f переставимы, т. е.

(16.30)

На свойстве 8 (равенство (16.30)) и было основано непосредственное вычисление предела функции в случае отсутствия неопределенности (см. § 16.1–16.4).

Если нарушается хотя бы одно условие, указанное в определении непрерывности, то точка х0 называется точкой разрывафункции.

Классификацию точек разрыва дают в зависимости от того, какое условие последнего определения непрерывности, в том числе равенства (16.29), нарушено.








Дата добавления: 2015-09-29; просмотров: 1992;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.