Понятие производной функции

 

Рассмотрим функцию . На кривой (рис. 3) возьмем произвольную точку с абсциссой . Придадим приращение . Новому значению соответствует точка кривой. При этом функция получит приращение

.

  Рис. 3 Отношение показывает, во сколько раз “в среднем” приращение функции больше (или меньше) приращения ее аргумента. Это отношение называют средней скоростью изменения функции на участке . Чем меньше , тем лучше средняя скорость на участке

будет характеризовать ту скорость, с которой меняется функция в точке . Поэтому за мгновенную скорость изменения функции в точке естественно принять

.

Этот предел и называется производной.

 

Определение. Производной функции в точке называется предел отношения приращения функции к вызвавшему его приращению аргумента, когда приращение аргумента стремится к нулю: .

Производная представляет собой скорость изменения функции в точке , т.е. скорость, с которой изменяется функция при переходе через точку. Таков наиболее общий смысл производной.

Геометрический смысл производной.Производная в точке равна тангенсу угла наклона касательной к кривой в точке , т.е. угловому коэффициенту касательной.

В теоретическом плане подчеркнем, что существование предела, которым выражается производная, надо понимать в общем смысле существования предела функции в точке. Это означает, что должен существовать не только при , но и при , причём оба предела должны совпадать. В этом требовании и заключается условие существования производной в точке . С геометрической точки зрения это условие означает независимость предельного положения секущей от выбора точки справа или слева от точки .

Функция, имеющая производную, называется дифференцируемой.

 

 

Таблица производных

 

 








Дата добавления: 2015-09-28; просмотров: 723;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.