ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ ДОЛГОВЕЧНОСТИ И ПРИНЯТЫЕ В НИХ ОГРАНИЧЕНИЯ
Согласно закону конгруэнции, между вяжущим веществом и конгломератом на его основе существует при оптимальных структурах обязательное соответствие свойств. Обеспечение условий, при которых создается необходимая долговечность вяжущего вещества оптимальной структуры, в значительной мере предрешает задачу обеспечения долговечности самого конгломерата. И хотя присутствие в ИСК, кроме вяжущего, других структурных элементов (заполнителя, контактной зоны, пор и др.) вносит свои коррективы, иногда значительные, в долговечность, все же эти коррективы принципиально не изменяют характер основной зависимости между долговечностью ИСК и его вяжущей частью при оптимальных структурах. Для строительных конгломератов эта зависимость может быть выражена формулой:
(4.1)
где τT,σ — долговечность конгломерата оптимальной структуры, определенная при температуре Т инапряжении σ; τ*T,σ —долговечность вяжущего вещества оптимальной структуры при тех же условиях ее определения, что и конгломераты; х — отношение фазовых отношений в вяжущем веществе ИСК и в вяжущем веществе оптимальной структуры, т. е. (с/ф)/(с*/ф); n — комплексный показатель степени, отражающий нелинейность зависимости долговечности от фазового отношения вяжущего вещества в конгломерате и обусловленный разновидностью и характеристикой заполнителя, а при отсутствии его — величиной поверхности раздела фаз; как правило, показатель n является положительной величиной и, следовательно, τ < τ*.
Долговечность вяжущего вещества τ* как микродисперсной матричной части конгломерата может быть выражена на участке кривой 3 (рис. 4.1) формулой, принятой в кинетической теории прочности и развитой в работах С.Н. Журкова:
(4.2)
где τ0 — кинетическая постоянная, характеризующая материал; γ — структурный коэффициент (кДж/моль∙МПа); σt — расчетное напряжение при температуре t, МПа; k — постоянная Больцмана, как отношение универсальной постоянной к числу Авогадро: k = R/NA; T — абсолютная температура по шкале К; τ0, и0, γ — постоянные величины, зависящие от природы и структуры материала.
Числитель экспоненты и0 - γσt имеет размерность энергии и называется энергией активизации процесса разрушения, обозначаемой и. Поэтому можно записать:
(4.3)
или нередко формулу (4.3) записывают в виде:
(4.4)
Подставляя то или иное выражение τ * в формулу (4.1) долговечности конгломерата, можно написать, что
(4.5)
или, что то же,
(4.6)
Формулы (4.5) и (4.6) долговечности учитывают действие только механических напряжений — от момента нагружения до момента разрыва материала, но не учитывают воздействия агрессивной среды[19]. Они не учитывают также возможного упрочнения и стабилизации структуры в эксплуатационный период, поэтому остаются пока недостаточно полными.
НЕКОТОРЫЕ ВОПРОСЫ НАДЕЖНОСТИ МАТЕРИАЛА В КОНСТРУКЦИЯХ
Более широким и емким свойством ИСК и качеством конструкций из них, чем долговечность, является надежность. Она тоже выражает комплексное свойство материала или системы, но содержит в своей характеристике большее количество критериев: безотказность, сохраняемость, долговечность и ремонтопригодность.
Безотказность — свойство конгломерата (системы) сохранять работоспособность в течение определенного или возможно более длительного времени без вынужденных перерывов на ремонт, или замену забракованного в конструкциях изделия и т.,д. Показателем этого свойства служит вероятность безотказной работы материала, оцениваемой числовой величиной возможности появления случайного обстоятельства (события) с нарушением безотказности работы. Отказом называют потерю работоспособности материала (системы) вследствие недопустимого изменения структуры и свойств под влиянием внешних воздействий и внутренних процессов.
Сохраняемость — свойство конгломерата (системы) сохранять приданные ему в технологический период качественные характеристики на стадиях хранения, транспортирования и последующего времени, обусловленного технической документацией. Это свойство количественно оценивается продолжительностью хранения и транспортирования до возникновения неисправности.
Долговечность — комплексное свойство, количественно выражаемое продолжительностью эффективного сопротивления сложному воздействию внешних и внутренних факторов в эксплуатационный период работы материала (см. 4.1) до соответствующего критического уровня.
Ремонтопригодность — свойство материала, выражающееся в способности к восстановлению неисправности, обнаруженной вследствие отказа. Показателем ремонтопригодности служит средняя продолжительность ремонта на один отказ данного вида, а также трудоемкость и стоимость устранения случайных дефектов, приведших к отказу.
С теоретических позиций за основной исходный принцип надежности ИСК принимают оптимальную структуру при условии правильно принятых компонентов, технологических параметров и режимов. Оптимальная структура, созданная с учетом эксплуатационных условий работы материала в конструкции, обеспечивает формирование повышенного ресурса как меры вероятности пребывания материала (системы) в безотказном состоянии: чем полнее прошла оптимизация структуры, тем выше ресурс; чем дальше реальная структура находится от оптимальной, тем меньшим ресурсом обладает ИСК, выше вероятность и ближе появление отказа.
Одним из числовых критериев оптимальных структур, как было показано выше, служит величина А в уравнении (3.15). Если А = 1, то структура — оптимальная, параметр А становится индикатором подобия, интенсивность отказов — наименьшая и равна λ0, время между двумя соседними отказами — наибольшее и равно τ0 = 1/ λ0. Если А ≠ 1, то структура — неоптимальная и поэтому интенсивность отказов λ нарастает тем в большей мере, чем дальше отстоит реальная структура от оптимальной по соответствующим критериям оптимальности. Время между двумя соседними отказами τ < τ0 и с ростом интенсивности отказов быстро уменьшается, поскольку τ = 1/λ. Таким образом, с увеличением или уменьшением индикатора А, по сравнению с его величиной, равной единице при оптимальной структуре, уменьшаются и ресурсы. Но вместе с тем следует учесть, что технологически полученная оптимальная структура в дальнейшем сохраняет тенденцию к непрерывному изменению под влиянием совокупности факторов, складывающихся при транспортировании, монтажных и других строительных работах и, главное, в эксплуатационный период с возможным проявлением временных элементов долговечности (см. 4.2), в том числе и упрочнения структуры, а следовательно, ростом ресурса, а также с деструкцией, т. е. снижением ресурса. В каждый данный момент времени отмечается неустановившийся уровень ресурса и его колебания вплоть до вероятности первого отказа. По аналогии с принципами Л. Больцмана (S = k∙lnW, где S — энтропия, W— термодинамическая вероятность, k — постоянная величина) можно, по-видимому, выразить и ресурс надежности: r = lnW. Это следует после логарифмирования уравнения справедливого для системы, сохраняющейся безотказной в течение времени τ от момента начала его отсчета при τ = 0.
Отсюда следует, что чем прогрессивнее технология или отдельные ее переделы в процессе производства ИСК, чем полнее использованы способы упрочнения и стабилизации структуры, торможения деструкционных явлений, чем больше структура приведена в состояние устойчивости и равновесности с меньшей сохранившейся внутренней и поверхностной свободной энергией, тем выше ресурс как функциональная мера надежности избежать первого и последующих отказов, т. е. выше безотказность, сохраняемость, долговечность конструкции, изготовленной из этого ИСК, применительно к данным эксплуатационным условиям.
И тем не менее, хотя ресурс и выступает в качестве функциональной меры надежности, он за больший или меньший период эксплуатации объекта под влиянием внешних и внутренних факторов, неуч генных в период прогнозирования, может достичь своего минимума. Последнее неизбежно приведет к необходимости срочного капитального ремонта строительного объекта, а возможно — и к разрушению объекта или отдельных его конструктивных элементов. Теория ИСК на данном этапе своего развития придерживается дилатонно-компрессонной теории деформирования и разрушения[20]. Сущность ее в кратком изложении заключается в следующем.
Атомно-молекулярные частицы системы находятся во взаимосвязи и непрерывном движении. В этом атомно-молекулярном множестве внутренняя энергия распределена случайным образом. Если система представлена упорядоченной, оптимальной и даже кристаллической структурой, то и тогда возможны флуктуации значений энергии частиц. Значения флуктуации могут быть как меньше средней величины энергии частиц, т. е. отрицательное ее значение, называемое дилатоном, так и больше средней, т. е. положительное ее значение, называемое компрессоном. Воздействие на систему механических эксплуатационных факторов приводит к новому перераспределению внутренней энергии, к прогрессирующему размножению флуктуации обоих знаков, изменению энергетического уровня атомно-молекулярных частиц в системе, нарушению орбит движения, в том числе валентных электронов, порождению ангармоничности тепловых колебаний атомов твердого тела.
Атомы могут оказаться в двух принципиально различных критических положениях: дилатонном и компрессонном. Первое возникает при увеличении доли кинетической энергии за счет уменьшения потенциальной, что в конечном итоге завершается отрывом атома от узла кристаллической решетки, неограниченным возрастанием площади эллиптических орбит валентных электронов, отрывом их от своих атомов с выходом из твердых или жидких тел (электронная эмиссия). Второе положение достигается при преобразовании кинетической энергии в потенциальную. При этом энергетический уровень атома опускается, амплитуда ангармонических колебаний уменьшается, эллиптические орбиты валентных электронов вырождаются в круговые, атом теряет связь с ближайшим окружением. Если первое (дилатон-ное) критическое положение атома сопровождается появлением значительных внутренних усилий и микродеформированием с их переходом в дальнейшем на макроуровень (без механодеструкции), то второе (компрессонное) критическое положение сопровождается потерей связи между атомами, особенно между теми их группами, которые характеризуются пониженной температурой и высокой плотностью, что может завершаться появлением микроразрушений, чему благоприятствуют и рядом расположенные дилатоны. Микродеформирование и микроразрушение с переходом в перспективе на макроскопический уровень находятся как бы в единстве, а разрушение под силовым воздействием внешних нагружений системы имеет дилатонно-компрессионную природу. Достоверность такого механизма разрушения непосредственно следует из кинетического уравнения прочности (4.2)[21], поскольку τ0 и τ — периоды финитного движения атомов в компрессионном состоянии и на любом другом энергетическом уровне.
Глава 5
Дата добавления: 2015-09-18; просмотров: 839;