Теоретическое введение. Системы, в которых одно вещество распределено в мелкораздробленном состоянии в среде другого, называются дисперсными
Системы, в которых одно вещество распределено в мелкораздробленном состоянии в среде другого, называются дисперсными. Распределенное вещество называется дисперсной фазой, а среда, в которой распределена дисперсная фаза – дисперсионной средой.Дисперсные системы с размером частиц дисперсной фазы от 1 до 100 нм называются коллоидными растворамиили золями.
Дисперсная фаза в коллоидном растворе (или золе) представлена коллоидными частицами, в состав которых входят ядро, зарядообразующие ионы и противоионы. Зарядообразующие ионы могут быть положительно или отрицательно заряженными, поэтому и коллоидные частицы имеют либо положительный, либо отрицательный заряд. Заряженные коллоидные частицы притягивают к себе молекулы Н2О из дисперсионной среды; так создается гидратная оболочка, окружающая коллоидную частицу.
Примерный состав коллоидных частиц золей Sb2S3 и Fe(OH)3 можно выразить следующими формулами:
[(mSb2S3) · nHS− · (n-x)H+ · yH2O]x-
[(mFe(OH)3 · nFe3+ · 3(n-x)Cl- · yH2O]3x+
Противоионы Н+ или Cl-, которые входят в состав коллоидных частиц, называют связанными. Свободные противоионы остаются в дисперсионной среде.
Коллоидную частицу и эквивалентную ей часть дисперсионной среды (гидратированных свободных противоионов) называют мицеллой. Мицеллу считают структурной единицей коллоидного раствора. Формулы:
{[(mSb2S3) · nHS- · (n-x)H+ · yH2O]x- + xH+ · zH2O}
{[(mFe(OH)3 · nFe3+ · 3(n-x)Cl- · yH2O]3x+ + 3xCl- · zH2O}0
выражают примерный состав мицелл золей сульфида сурьмы и гидроксида железа.
Коллоидная дисперсность вещества является промежуточной между группой дисперсности, характерной для взвеси и молекулярной, характерной для истинных растворов. Поэтому коллоидные растворы получают либо из истинных растворов путем укрупнения частиц молекулярной дисперсности до определенного предела (максимум до 100 нм), либо из взвеси путем дробления грубодисперсных частиц также до определенного предела (минимум до 1 нм). В этой связи различают конденсационные методы (укрупнение частиц) и метод диспергирования(дробление частиц).
Конденсация частиц молекулярной дисперсности может происходить в процессе гидролиза солей некоторых поливалентных металлов, например, FeCl3. Гидролиз иона Fe3+ протекает по ступеням:
Fe3+ + H2O = FeOH2+ + H+
FeOH2+ + H2O = Fe(OH)2+ + H+
Fe(OH)2+ + H2O = Fe(OH)3 + H+
Гидроксид железа Fe(OH)3 не выпадает в осадок, т.к. степень гидролиза FeCl3 по третьей ступени мала.
Зарядообразующими ионами в процессе образования золя могут быть Fe3+, FeOH2+ , Fe(OH)2+ , а противоионами − Cl− .
Примером получения золей методом диспергирования может служить получение коллоидного раствора Fe(OH)3 путем химического дробления осадка гидроксида железа (III), называемого пептизацией. Пептизатором может быть электролит с одноименным ионом, входящим в состав осадка, например, FeCl3.
Добавление пептизатора к небольшому количеству осадка в водной среде приводит к тому, что ионы Fe3+ проникают в глубь осадка и разрыхляют его, постепенно дробя до коллоидной дисперсности. Дробление называют химическим потому, что ионы непросто проникают в осадок, а, взаимодействуя с его частицами, образуют дисперсную фазу положительного заряда. Ионы Fe3+ являются зарядообразующими в составе коллоидных частиц получающегося золя, а ионы Cl− противоионами.
Коллоидные растворы обладают специфическими оптическими, кинетическими и электрическими свойствами (специфика связана с размерами и зарядом коллоидных частиц) и характеризуются высокой кинетической и агрегативной устойчивостью.
Устойчивость коллоидного раствора можно нарушить. Потеря агрегативной устойчивости золя приводит к укрупнению частиц дисперсной фазы, их слипанию. Этот процесс называют коагуляцией. Коагуляция вызывает нарушение кинетической устойчивости системы, которая приводит к образованию осадка (коагулята). Этот процесс называют седиментацией.
Примерный состав коагулята золей сульфида сурьмы и гидроксида железа выражают формулами:
[(mSb2S3) · nHS- ·nH+]0;
[(mFe(OH)3 · nFe3+ · 3nCl-]0.
Дата добавления: 2015-09-11; просмотров: 1025;