Теорема 1.

Над алфавитом мощностью m можно создать ровно mn слов длиною n.

Доказательство:

Воспользуемся методом полной математической индукции. Пусть - элементы (буквы) алфавита мощностью . Из этого алфавита можно создать слов длиной 1. Такими словами будут буквы этого алфавита. Для данное утверждение является правильным .

Допустим, что данное утверждение является правильным для , и покажем, что тогда оно выполняется и для . Предположим, число длины равняется . Чтобы создать все возможные слова длины , достаточно к каждому слову длины добавить в его конце последовательно каждую из букв алфавита. Таким образом, из каждого слова длины образуется разных слов длины . Таким образом, получаем все возможные слова длиною . Поскольку слов длиной является , то общее количество слов длиной будет . Таким образом, предположив истинность утверждения для , доказано, что оно является правильным для . Теорема доказана.

 








Дата добавления: 2015-09-11; просмотров: 603;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.