Правило фаз Гиббса

Глава 10

Гетерогенное равновесие многокомпонентных систем без химических реакций

Правило фаз Гиббса

Если гомогенная однокомпонентная система находится в равновесии, то ее состояние определяется значениями двух независимых переменных (параметров), так как величина третьей переменной определяется по уравнению состояния

φ .

Если в однокомпонентной системе находятся в рановесии две фазы, то ее состояние уже определяется только одной независимой переменной, поскольку появляется еще одно уравнение связи (уравнение Клапейрона – Клаузиуса, связывающее температуру и давление)

.

В точке пересечения кривых, построенных по уравнению Клапейрона – Клаузиуса для равновесия двух фаз с третьей (например, жидкость – пар и кристалл – пар), все три фазы находятся в равновесии. Эта точка жестко фиксирована и в ней нет ни одной независимой переменной. Точку равновесия трех фаз в однокомпонентной системе называют тройной точкой.

Определим число степеней свободы (υ) одно- и многокомпонентных гетерогенных систем как число независимых термодинамических параметров, определяющих состояние системы, изменение которых в определенных пределах не вызывает исчезновения одних и образование других фаз. Для однокомпонентной равновесной системы число степеней свободы в зависимости от числа фаз определяется исходя из уравнений связи, для многокомпонентных систем необходимо найти общее решение проблемы, а именно установить связь между числом компонентов в системе (K), числом равновесных фаз (Ф) и числом степеней свободы системы (υ).

Рассмотрим систему, содержащую К компонентов и состоящую из Ф фаз, находящихся в равновесии между собой. Состав каждой из фаз определяется концентрациями (К – 1) компонентов, а так как число всех фаз равно Ф, то состав всей системы определеляется Ф (К – 1) концентрациями всех компонентов. Для полного описания состояния системы необходимо учесть ещё и внешние параметры (температура и давление). Таким образом, общее число переменных равно Ф (К – 1) + 2.

Условием равновесия гетерогенной системы из Ф фаз и К компонентов является постоянство температуры и давления, а также равенство всех химических потенциалов каждого из компонентов во всех фазах. Следовательно,

по условию механического равновесия

;

по условию термического равновесия

;

по условию химического равновесия

(10.1)

В равенствах (10.1) верхние индексы обозначают номера фаз, нижние индексы относятся к компонентам.

Каждое значение химического потенциала mi является функцией температуры, давления и концентрации всех компонентов. Например, для двухкомпонентной системы

Следовательно, каждое равенство из (10.1), например,

,

представляет собой уравнение, связывающее переменные системы. Эти уравнения (уравнения связи) уменьшают число независимых переменных, характеризующих систему. Число этих уравнений равно К (Ф – 1).

Итак, число действительно независимых переменных (число степеней свободы) многокомпонентной системы равно

, (10.2)

откуда

. (10.3)

Последнее соотношение было получено Дж. Гиббсом и носит название правила фаз Гиббса: число степеней свободы равновесной термодинамической системы, на которую из внешних факторов влияют только давление и температура, равно числу компонентов системы плюс два, минус число фаз. Данному правилу подчиняются все равновесные системы, состоящие из любого числа фаз и любого числа веществ.

Перепишем уравнение (10.3) в виде

, (10.4)

тогда при υ = 0 (минимальное число степеней свободы) находим, что

, (10.5)

т. е. максимальное число фаз в гетерогенной системе при равновесии равно числу компонентов плюс два. Таким образом, в однокомпонентной системе максимально могут находиться в равновесии три фазы, в двухкомпонентной – четыре и т. д.

Следует отметить, что если значение одного из внешних параметров фиксируется (P = const или Т = const), то число степеней свободы системы уменьшается на единицу и правило фаз Гиббса записывается следующим образом:

. (10.6)

Далее, если в гетерогенной системе две фазы совпадают по составу, то для концентраций компонентов появляются дополнительные уравнения связи типа

.

В общем случае число таких уравнений связи равно (К – 1) и число степеней свободы определяется выражением

. (10.7)

Итак, система, в которой две фазы совпадают по составу (например, азеотроп), будет вести себя как однокомпонентная независимо от числа компонентов.

Если в системе совпадают по составу три фазы, то

. (10.8)

Для нульвариантной (инвариантной) системы υ = 0, поэтому

.

Если система однокомпонентная (К = 1), то Фmax = 3. Если система двухкомпонентная, то Фmax = 2, однако это противоречит условию поставленной задачи: Ф = 3. Поэтому три фазы, совпадающие по составу, могут существовать только в однокомпонентной системе (тройная точка).








Дата добавления: 2015-08-20; просмотров: 2394;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.