Введение. Рецензент: Токмазов Г.В., кандидат педагогических наук, профессор;
Новороссийск 2013
УДК 65.012(075.8)
ББК 65вбя73
Рецензент: Токмазов Г.В., кандидат педагогических наук, профессор;
кафедра высшей математике Новороссийского государственного морского университета.
Ванин Ю.П.
Математический анализ в упражнениях и задачах: Учебное пособие для вузов. Новороссийск, НФ МГЭИ, 2013. – 130 с.
Пособие написано на основе многолетнего опыта чтения лекций и ведения семинарских и практических занятий на социально-экономическом факультете Новороссийского филиала Московского гуманитарно-экономического института и охватывает основы математического анализа функций одной и нескольких переменных, теории пределов, дифференциального и интегрального исчисление, обыкновенных дифференциальных уравнения, теории числовых и степенных рядов. По каждой теме кратко излагаются основные теоретические сведения и большое количество примеров стандартных и нестандартных задач, предлагаются контрольные вопросы, способствующие усвоению теоретического материала, приводятся примеры и упражнения для самостоятельной работы с ответами и указаниями.
Пособие предназначено для студентов – экономистов и других специальностей и лиц, занимающихся самообразованием.
Введение
Математический анализ - часть математики, в которой функции и их обобщения изучаются методом пределов. Понятие предела тесно связано с понятием бесконечно малой величины, поэтому можно также сказать, что математический анализ изучает функции и их обобщения методом бесконечно малых. Название "Математический анализ" - сокращенное видоизменение старого названия этой части математики - "Анализ бесконечно малых"; полнее раскрывает содержание, но оно - тоже сокращенное (название "Анализ посредством бесконечно малых" охарактеризовало бы предмет более точно). В классическом математическом анализе объектами изучения (анализа) являются прежде всего функции. "прежде всего" потому, что развитие математического анализа привело к возможности изучения его методами более сложных образований, чем функция, - функционалов, операторов и т. д.
В природе и технике всюду встречаются движения, процессы, которые описываются функциями; законы явлений природы также обычно описываются функциями. Отсюда объективная важность математического анализа как средства изучения функций. Математический анализ в широком понимании этого термина охватывает весьма большую часть математики. В него входят числовые последовательности и пределы, теория функций действительной одной переменной и нескольких переменных, дифференциальное и интегральное исчисление, функций функции комплексного переменного, теория обыкновенных дифференциальных уравнений, теория дифференциальных уравнений с частными производными, теория числовых и функциональных рядов, теория интегральных уравнений, дифференциальная геометрия, вариационное исчисление, функциональный анализ и некоторые другие математические дисциплины. Современные теория чисел и теория вероятностей применяют и развивают методы математического анализа.
Все же термин математического анализа в современной программе для бакалавров употребляется для наименования только основ математического анализа, объединяющих в себе теорию действительного числа, теорию пределов числовой последовательности, общую теорию функций в том числе из элементарной математики тригонометрические логарифмические функции, теория неявных функций, функции, заданные параметрами, асимптоты функций и т.д..
Особое внимание в пособии уделено дифференциальному и интегральному исчислению. Прежде всего понятию производной и её геометрический и физический смысл. В программе средней школы имеется раздел, посвящённый производной функции, однако, как практика показывает, студенты первого курса не владеют техникой вычисления производной элементарных функций и особенно сложных функций. В связи с этим в пособие излагаются краткие основы теории функций, теоремы с доказательством и без доказательства, много примеров с решением и для самостоятельной работы, посвящённых технике дифференцирования одной переменной и нескольких переменных, дифференциалу функций и применение его в расчётах, исследованию функций с помощью производной первого порядка и высших порядков, экстремальные задачи для определения максимума и минимума функций и т.д..
Второй по значимости раздел в пособии посвящён интегральному исчислению, прежде всего понятию неопределённого и определённого интеграла, их свойствам, технике интегрирования (замена переменных, интегрирование по частям, интегрирование рациональных дробей, интегрирование некоторых тригонометрических функций) и использование интегралов для решения практических задач (вычисление площади плоских фигур, объёмов тел вращения, длины кривой, массы тела и др).
Можно сказать, что совсем новой темой для студентов является раздел, посвящённый дифференциальным уравнениям. В пособии кратко изложены основные понятия обыкновенных дифференциальных уравнений и методы их решений (разделение переменных, однородные и неоднородные дифференциальные уравнения первого порядка, дифференциальные уравнения высших порядков с постоянными коэффициентами и др.).
Из теории рядов изложены основы числовых рядов, их сходимость и разложение некоторых стандартных функций в степенной рядов Маклорена.
Дата добавления: 2015-08-11; просмотров: 1104;