Течение газа в соплах

Сопло является трансформатором энергии в ракетном двигателе и его назначение - получение наибольшего значения скорости истечения рабочего тела, существенно превышающего значение скорости звука. Это возможно при использовании сопла особой конфигурации, отличной от насадки схемы рис 5.2.

Рассмотрим адиабатическое течение газа в канале переменного сечения. Независимыми переменными в данной системе пусть будут ρ и S. Уравнение состояния имеет вид: (а)
для изоэнтропического течения и (б) Скорость распространения звука в газах тогда . С учетом (а) и (б) получим:

,

где – число Маха, отношение местной скорости газа к местной скорости звука в нем, мера сжимаемости газа.

Пусть движение газа происходит с возрастанием скорости и М<1 (дозвуковое течение). Тогда и имеют разные знаки, разгон потока происходит при уменьшении площади канала по осевой координате. При сверхзвуковом течении ( ) увеличение скорости происходит при , т.е. канал должен расширяться. Физически это означает, что плотность газа упала настолько, что постоянный расход газа сохраняется при одновременном увеличении скорости потока и площади канала.

Для достижения сверхзвуковой скорости изменение площади канала по осевой координате должно меняться следующим образом. При выходе из ресивера сечение канала должно уменьшаться до места достижения скорости звука ( ), здесь канал имеет минимальное сечение ( ), дальнейшее увеличение скорости газа при возможно только при увеличении площади поперечного сечения канала. Сопло для получения сверхзвуковой скорости с таким изменением площади поперечного сечения вдоль оси предложил шведский инженер Лаваль в 1908 году. Из (5.3) следует, что скорость истечения не зависит от значения давления в ресивере и от разности давлений в ресивере и окружающей среде, а определяется температурой и отношением давлений в ресивере и на срезе сопла. Но даже при истечении в вакуум скорость истечения имеет конечное значение

являющееся теоретическим пределом.

При достижении потоком скорости звука наступает кризис течения, это происходит в минимальном сечении сопла и параметры газа в нем имеют критические значения – . Скорость звука переменна по длине сопла.

Умножим (5.3) на , с учетом уравнения Майера получим:

, (6.1)
т.е. при адиабатическом течении сумма постоянна и равна скорости звука в заторможенном газе, величина есть характеристика торможения.

В минимальном сечении , из (6.1) получим:

,

тогда температура газа в минимальном сечении сопла

.

В адиабатическом процессе , отсюда давление в минимальном сечении

.

В практических расчетах параметров изоэнтропического одномерного течения газа в соплах используют газодинамические функции - безразмерные функции некоторых аргументов, определяемые отношениями параметров в i-м сечении сопла к значениям этих же параметров для заторможенного газа в этом же сечении сопла.

В качестве аргумента используют приведенную скорость – отношение скорости газа в i-м сечении сопла к критической скорости

,

.

Значение изменяется от в ресивере (корпусе двигателя, камере сгорания) до предельного при истечении в вакуум .

Связь между приведенной скоростью и числом Маха:

,

В практике расчетов используют таблицы, в которых приведены значения функций, что позволяет вычислить параметры потока в любом сечении сопла при известных параметрах заторможенного газа и относительном диаметре канала (сопла). В качестве примера на рис.6.1 показано распределение параметров газового потока по тракту двигателя, рассчитанного с помощью газодинамических функций.

На практике, при проектировании ракетных двигателей условно считают, что критическое и минимальное сечение сопла совпадают.

Исследование течений в соплах для профилирования их и расчетов параметров тепломассообмена проводят на основе модели невязкого и нетеплопроводного газа. Движение такого газа описывают уравнения Эйлера и для случая осесимметричного стационарного течения при отсутствии массовых сил они имеют вид:

(6.2)

Здесь добавлены уравнения неразрывности и сохранения энтальпии H движущегося газа, ось направлена по оси симметрии двигателя (рис. 6.1). В механике жидкости и газа существует направление - вычисление параметров двухфазных (продукты сгорания металлизированных топлив) течений в соплах РД.

 

Уравнения (6.2) есть система квазилинейных (линейных относительно производных) уравнений. В зависимости от скорости потока система может быть эллиптического типа ( ), параболического ( ) или гипербо-лического типа ( ).

 

6.2. Профилирование камеры жидкостного ракетного двигателя

6.2.1. Определение размеров камеры сгорания

Одним из факторов, определяющим полноту сгорания топлива и тем самым влияющим на совершенство камеры сгорания, является время, которое может быть отведено для протекания химических реакций горения. Оно определяется скоростью газа в камере сгорания, используемым для процессов горения объемом камеры сгорания Vк , а также давлением и температурой.

В настоящее время нет способа расчета объема камеры сгорания, учитывающего действительно происходящие в ней физико-химические процессы, поэтому объем камеры сгорания, необходимый для полного сгорания топлива, определяют с использованием экспериментальных данных.

На рис. 6.2 показан график изменения удельного объема продуктов сгорания по времени от начального удельного объема жидкого топлива T до удельного объема продуктов сгорания к по окончании процесса горения.

Предположим, что до некоторого времени запаздывания tзап реакции горения не происходят, а во время tзап процесс горения протекает мгновенно. При этом, исходя из графика, средний удельный объем продуктов сгорания ср в момент времени tзап будет равен ср=0.5 к. Средний удельный объем позволяет найти истинное время пребывания топлива и его продуктов сгорания в камере сгорания:

, (6.3)

где – условное время пребывания.

(6.4)

Отсюда можно получить

. (6.5)

Обработка экспериментальных данных для различных топлив (двигателей) показала, что

Определив из термодинамического расчета

(6.7)

можно рассчитать объем камеры сгорания .

 

С другой стороны

Тогда из (6.5) следует

(6.8)

Преобразуем (6.8)

, (6.9)
где - приведенная длина камеры сгорания.

Тогда для объема камеры сгорания получим выражение

. (6.10)

Обработка экспериментальных данных для различных топлив (двигателей) показала, что:

- для топлив HN03 + НДМГ, N204 + НДМГ, 0 + керосин – lприв = (1,0÷1,5)м;
- для топлива О + Н - lприв = (0,5 ÷1,0) м.

Определим размеры камеры сгорания. Для цилиндрической камеры сгорания

(6.11)
где

Тогда,

(6.12)

 








Дата добавления: 2015-08-11; просмотров: 3036;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.