Вязкость дисперсных систем

Важной характеристикой структурно-механических свойств является течение. Течение бывает ламинарным и турбулентным.

Ламинарное течение – движение жидкости в виде параллельных слоев, имеющих различную скорость и не смещающихся между собой. Возникает при низкой скорости течения и малом перепаде давления.

Турбулентное течение – течение, сопровождающееся вихреобразованием.

В соответствие с уравнением Ньютона сила сопротивления при течении F прямо пропорциональна градиенту скорости du и площади поверхности потока S:

- уравнение Ньютона

где η – коэффициент пропорциональости или вязкость, зависит от природы жидкости Единицей измерения вязкости является пуаз (пз), 1 пз = Па∙с= Н∙с/м2. Единица измерения вязкости названа в честь франц. учёного Пуазейля, который впервые изучал движение жидкости в капиллярах.

Ламинарное течение по трубкам или скорость течения жидкости из капилляра описывается уравнением Пуазейля (1842г.), которое было найдено экспериментальным путём:

,

где u - объемная скорость течения;

r – радиус капилляра трубки;

Δp – перепад давления или разность давления на обоих концах трубки;

Η – вязкость жидкости;

l – длина капилляра.

Величина, обратная вязкости называется текучестью – характеризует подвижность жидкости под влиянием внешних воздействий.

Жидкости, у которых отсутствует зависимость вязкости от характера взаимодействия частиц, подчиняются законам Ньютона и Пуазейля и называются ньютонскими жидкостями. Уравнение Ньютона и Пуазейля соблюдается, если жидкость движется ламинарно.

Вязкость дисперсных систем всегда превышает вязкость чистой дисперсионной среды. Зависимость вязкости коллоидной системы от концентрации дисперсной фазы выражается уравнением Эйнштейна (1906г.):

 

- уравнение Эйнштейна,

 

где η – вязкость коллоидной системы;

η0 – вязкость чистого растворителя (дисперсионной среды);

φ – объемная доля частиц дисперсной фазы;

k – коэффициент, характеризующий форму частицы. Для сферической формы k = 2,5.

Для структурированных систем законы Ньютона не выполняются.

 

 








Дата добавления: 2015-08-11; просмотров: 4703;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.