Занятие 10 Эталонная модель взаимодействия открытых систем OSI
Модель OSI, как это следует из ее названия (Open System Interconnection), описывает взаимосвязи открытых систем. Что же такое открытая система?
В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.
Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.
Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.
Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.
Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.
Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:
- возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;
- возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;
- возможность легкого сопряжения одной сети с другой;
- простота освоения и обслуживания сети.
Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet - Request For Comments (RFC), что можно перевести как «запрос на комментарии», - показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.
В начале 80-х гг. прошлого века ряд международных организаций по стандартизации — ISO, ITU и некоторые другие — разработали модель, которая сыграла значительную роль в развитии сетей. Она называется моделью взаимодействия открытых систем, или моделью OSI (Open System Inlerconnection). Модель OSI определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень. Она была разработана на основе большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е гг. Полное описание этой модели занимает более 1000 страниц текста.
В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств.
Физический уровень (physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, волоконно-оптический кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и др. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме того, здесь стандартизуются типы разъемов и назначение каждого контакта.
Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.
В некоторых сетях линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, и физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (data link layer) является проверка доступности среды передачи. Другая задача данного уровня — реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует.
К типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI.
В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.
В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи.
Для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.
Сетевой уровень (network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей.
На сетевом уровне сам термин «сеть» наделяют специфическим значением. В данном случае под сетью понимают совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.
Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня. Сети соединяются между собой специальными устройствами называемыми маршрутизаторами. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.
Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.
Сообщения сетевого уровня принято называть пакетами (packets). При организации доставки пакетов на сетевом уровне используется понятие «номер сети». В этом случае адрес получателя состоит из старшей части — номера сети и младшей — номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину «сеть» на сетевом уровне можно дать и другое, более формальное определение: сеть — это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.
Транспортный уровень (transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.
Сеансовый уровень (session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике не многие приложения используют сеансовый уровень и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.
Представительный уровень (presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. Нa этом уровне могут выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.
Прикладной уровень (application layer) — это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).
Сетезависимые и сетенезависимые уровни. Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.
Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми, т.е. протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием.
Три верхних уровня — прикладной, представительный и сеансовый — ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.
Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений. Компьютер с установленной на нем сетевой ОС взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).
В модели OSI различаются два основных типа протоколов. В протоколах с установлением соединения (connection-oriented) перед обменом данными отправитель и получатель должны сначала установить соединение и, возможно, выбрать некоторые параметры протокола, которые они будут использовать при обмене данными. После завершения диалога они должны разорвать это соединение.
В протоколах без предварительного установления соединения (connectionless) отправитель просто передает сообщение, когда оно готово. При взаимодействии компьютеров используются протоколы обоих типов.
Модель OSI подразумевает открытость средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.
Это дает следующие преимущества:
- возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;
- возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;
- возможность легкого сопряжения одной сети с другой;
- простота освоения и обслуживания сети.
Примером открытой системы является международная сеть Интернет. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов — пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах.
Модель OSI | |||||
Тип данных | Уровень | Функции | Описание | ||
Данные | 7. Прикладной уровень | Доступ к сетевым службам | Это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, , а также организуют свою совместную работу. | ||
6. Уровень представления | Представление и кодирование данных | Имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. | |||
5. Сеансовый уровень | Управление сеансом связи | Обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. | |||
Сегменты | 4.Транспортный | Прямая связь между конечными пунктами и надежность | Обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. | ||
Пакеты | 3. Сетевой | Определение маршрута и логическая адресация | Служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. | ||
Кадры | 2. Канальный | Физическая адресация | Проверка доступности среды передачи и реализация механизмов обнаружения и коррекции ошибок. | ||
Биты | 1. Физический уровень | Работа со средой передачи, сигналами и двоичными данными | Имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, волоконно-оптический кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных | ||
Дата добавления: 2015-08-11; просмотров: 834;