Идеальный газ в поле силы тяжести
Каково поведение идеального газа в поле внешней силы? Для определенности в качестве внешней силы возьмем хорошо известную силу тяжести mg. Под действием внешней силы механическая система частиц приобретает импульс и перемещается как целое поступательно в направлении силы. В идеальном газе, находящемся во внешнем поле сил, каждая отдельная частица приобретает импульс в направлении силы, а также соответствующую потенциальную энергию. Однако в газе наряду с упорядоченным движением в направлении действия силы существует хаотическое тепловое движение. В результате конкуренции между этими двумя типами движений возникает неравномерное распределение макроскопических параметров: плотности частиц, давления, температуры по объему, занимаемому газом.
Рассмотрим столб газа сечением S, находящийся при постоянной температуре в поле силы тяжести. Выделим слой газа толщиной dz на высоте z и вычислим давление газа на его основания. Давление слоя газа на верхнее и нижнее основания слоя разное — оно различается в результате действия силы тяжести. Очевидно, разность давлений равна весу газа, заключенного в слое, отнесенному к единице площади основания столба.
Пусть разность давлений есть dP. Давление газа с ростом высоты уменьшается, поэтому dP равно весу слоя со знаком минус. Вес газа в объеме слоя dV = dz·S равен ρ·g·dV, где ρ — плотность газа, g — ускорение силы тяжести. Таким образом,
dP = ‑ρ·g·dV/S = ‑ρ·g·dz.
По определению . Выразим отношение N/V с помощью уравнения состояния (2.7), после чего находим:
.
Интегрируя это соотношение, получим , где P0 — константа, определяемая пределами интегрирования. Окончательно имеем:
. (2.9)
Здесь P0 — давление при z = 0. т. е. у основания столба. Аналогично с высотой изменяется и плотность частиц
. (2.10)
Давление и плотность газа распределены по объему газа неоднородно, они принимают максимальные значения у основания столба и убывают с высотой.
Величина, входящая в показатель экспоненты в формулах (2.9) и (2.10), есть потенциальная энергия частицы в поле тяжести U = mgz-Таким образом, распределение молекул в произвольном потенциальном внешнем поле, в котором частицы обладают потенциальной энергией U(r), может быть описано формулой:
. (2.11).
Эта формула называется распределением Больцмана. Здесь n0 — плотность частиц в точках пространства, для которых потенциальная энергия принята равной нулю.
Согласно распределению Больцмана число частиц, обладающих определенными значениями потенциальной энергии определяется отношением величины потенциальной энергии U к тепловой энергии частицы kБT. Чем больше энергия теплового движения, тем более разупорядочена система частиц, значит, тем более однородно распределены частицы в пространстве. В самом деле, если kБT >> U, , и из формулы (2.11) следует, что n = n0 при любом значении U. В случае kБT << U распределение частиц максимально упорядочено: плотность частиц максимальная состоянии с минимальной потенциальной энергией Umin, в то время как плотность частиц в других состояниях равна нулю.
Дата добавления: 2015-08-08; просмотров: 1754;